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Summary

In order to clarify the effects of vibrational excitation on shock-wave transi-
tions of weak, spherical N-waves, which were generated by using sparks and exploding
wires as sources, the compressible Navier-Stokes cquations were solved numerically,
including a one-mode vibrational-relaxation equation. A small pressurized air-sphere
explosion was used to simulate the N-waves gencrated from the actual sources. By
employing the random-choice method (RCM) with an operator-splitting technique, the
effects of artificial viscosity appearing in finite-difference schemes were eliminated
and accurate profiles of the shock transitions were obtained. However, a slight ran-
domness in the variation of the shock thickness remains. [t is shown that a computer
simulation is possible by using a proper choice of 1initial parameters to obtain the
variations of the N-wave overpressure and half-duration with distance from the source.
The calculated rise times are also shown to simulate both spark and exploding-wire
data. It was found that, in addition to the vibrational-relaxation time of oxygen,
both the duration and the attenuation rate of a spherical N-wave are important factors
controlling its rise time.

Trhe effects of the duration and the attenuation rate of a spherical N-wave on its
rise time, which are designated as the N-wave effect and the nonstationary effect,
respectively, are discussed in more detail pertaining to Lighthill's analytical solu-
tions and the RCM solutions for nonstationary plane waves and spherical N-wavesg It
is also shown that the duration and the attenuation rate of a spherical N-wave aY€é
affected by viscosity and vibrational nonequilibrium, so that they can deviate from
the results of classical, linear acoustic theory for very weak spherical waves.
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L. NTRODUCTION

Ihe pressure waves gencrated by supersonic
transport aircrait (581 and tfrom explosions in air
are often obscerved as weak N-waves far from the
source.  Such pressure waves are heard as sonic
booms. The loudness of these waves depends on
their maximum overpressures and rise times (Ret. 1}.
The N-waves with short {microseconds) rise times
are perceived as louder and more startling than
the ones with long (mitliseconds) rise times. As
aconsequence, Newave rise times were investigated
extensively for SST sonic booms and for explosions
in air (Refs. 2-4). However, the observed $S7
rise times were often found to be lurger than those
which were estimated tfrom clussical theory for
viscous shock structures of steady, plane waves,
derived by Tavior (Ref. 51, A recent review of
this matter may he found 1n Ret'. 6,

This discrepancy was attributed mainly to the
effects of atmospheric turbulence (Rets. ~-10),
and real-gas effects arising from the vibrational
excitation of the oxvgen and nitrogen air molecules
(Rets. 11, 12). However, the decisive fuctor tor
this increased rise time was still in guestion.
There were diftficultics in providing correlations
between the observed and analyvtically estimated
rise times, owing to a lack of information regard-
ing the ambient temperature, humidity and air
turbulence.  Such quantitics are not always readily
avatlable. It was theretore necessary to carry out
some simulation experiments under contrelled con
ditions where Anown atmospheric conditions could
be obtained.

Holst-Jensen (Ref, 6 was able to generate
well-formed weak spherical N-waves by using sparks
or exploding wires as 4 source in a still-air dome,
usually used for air-cushion experiments (Ref. 13).
n this manner he wanted to clurity the vibrational
effects on the rise time of SST Newaves. e found
that the observed rise times were much shorter
than the rise times estimated from the analvsis of
plune, fully-dispersed waves (Ref
could not be explained by umy
The object of this report 1s to pro.ile o theoretic
al basis for explaining Holst Jensen’'~ data, which
will he outlhined in Yection O

1200 The results
exasting analyvsis,

The processes nvolved 1n the venceration ot
N-waves by exploding sparks and wires are very con
plex and arc not reudily predicted. Vonsequentiy,
1t 1s necessary to assume a reasonable source model
in order to simulate the explosions.  In this paper
1t is assumed that the expanding plasmi can be
simulated by a pressuriced sphere of =mall radius
at room temperature.  The computer =imulation
requires adijusting the rvadius of the pressurized
sphere and the imaginary diaphragm pressure ratio
to fit the experiments for maximum overpressure
and half-duration of the N-wave with distance from
the source. It is then possible to determine the
Lo initial energy of the source.  The latter
is of academic interest as it is not possible to
determine the actual energy release from the voltage
and capacitance of the Jischarge without a great
deal of additional time-dependent measurements.

The nonstationary, spherical -symmetric Navier-
Stokes cquations were solved numerically, including
the cquation of one-mode vibrational relaxation for
explestons of pressurised wohieres in atmospheric

@ir. AR operator-splitting technique was used in
which, at the first stage of calculation, the solu-
tions for inviscid, frozen flow were obtained by
applying the Random-Chorce Method (RUM) and then
the eftects of viscosity and vibrational nonequily-
brium were evaluated by using an explicit finite-
difference method.

The RCM is g numerical method which was devel
oped by Glimm (Ref. 113, Chorin iRef. 13) and Sod
(Ret'. 16) for tlow problems inciuding shock waves.
In this method, a Riemann problem is solved for
each spatial mesh at cach time step and then one
of its solutions is chosen at random as a solution
for the next time step by using a random sampling
techni ue. It is the great merit of this method
that shock waves and contact surfuaces can be ex
pressed as discontinuous surfaces without smearing
arising from artificial viscosities inherent in
all finite-difference methods.  This is the man
reason for adopting the RCM for the present analvsis.
The algorithm is based on a provram Jdeveloped by
sarto and Glass (Ref. 17).  The application of the
operator-splitting technique for anulyzing the
Navier-Stokes equations was first introduced by
MacCormuck (Ref. 18 In his analysis, the nviscid
solutions were obtained using o chiracteristic
method.  Recently, Satofvla and Shimizu (Ret. 19)
have tried to solve the N ier-stokes cquat fons
for a sheck-twoe problem vy applying the RUM with
an operator-splitting technique.  In the present
analysis, the RUM with an operator-splitting tech-
nique was extended to include vibrational relaxation
effects for spherically-synmetric waves.

It will be shown subscquently  sat the risc
times of weak, spherical N-waves  erated by sparks
and exploding wires are seriously affected by two
factors which never appear in steady plane waves.
These are designated as an J-or0 effect and a
Coet e L e orespaatively. The Newave
effect means that the rise fimes of weak N-waves
are attected by the expansion of the flow immedh-
ately behind the shock tront. The nonstatiorary
ettect means that the rise times of weak shock
waves respond to chacces in shock strength so slowly
that thearr transient behuviours must be considered
The fundamental analytical ideas about these
vifects were provided by Lighthill (Ref. 20) for
hath viscous N-waves and impulsively-generated
viscous plane waves.  In Section 3, his results
are re-examined for use in the present study.

In order to consider the effects of vibrational
excrtation of oxyvgen and nitrogen air molecules, the
papers of Polvakova et al (Ref. 21) and Johannsen
and Hodgson {Ref. 12) for planc, dispersed waves
are also re-cxamined in Section 3, and an approxi-
mite relation is rived for the rise time of a
tully or partly-dispersed wave.  Furthermore, the
moditfied Tavlor and lighthill solutions for fully-
dispersed waves are discussed.

In Sections 4.1 and 4.2, the basic cquations
and the numerical method of solution are described.
In Section 4.3, to validate the method of solutign
for nonstationary shock transitioms, RCM solutions
for nonstationary viscous and dispersed plane waves
arce compared with analytical solutions described
in Section 3. As for solutions for spherical waves
{Section 4.4y, some numerical results for weak
spherical N-waves in air are presented for the
following tive vases: (1) formation of N-waves in
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the near-tield of a pressurized sphere, (ii) com-
parison between perfect-inviscid, perfect-viscous,
real-inviscid and real-viscous solutions, (1ii)
effects of vibrational relaxation time or ambient
temperature and humidity, (iv) effects of N-wave
duration or radius of pressuriczed sphere, and (v)
effects of nitrogen vibrational relaxation. The
observed rise times of spark and exploding-wire
generated N-waves are also compared with those
obtained from the analytical simulations.

In this report, the usual Jdefinition of rise
time is followed, and is taken as the time-interval
for the overpressure to vary from 10% to 90% of its
peak value. This definition is quite arbitrary and
is especially uscful for actual SST signatures, as
discussed in Ref. 6. Figure 1.1 illustrates the
definition of an N-wave rise time ty and its halt-
duration t4. Figure 1.2 also illustrates the
definition of a plane-wave rise time tp. The
corresponding shock thickness Ax and half-duration
length xg may approximately be given by

Ax = a t, X

'y 474ty

where a) is the undisturbed speed of sound, since we
consider only very weak waves.

2.  SPARK AND EXPLODING-WIRE DATA

In this section, the spark and exploding-wire
experiments which were carried out by Holst-Jensen
(Ref. 6) and the resulting data are summarized.

The purpose of these experiments was to generate
weak, fully-developed N-waves with overpressure
below 100 Pa in air, which would have interference-
free shock fronts. This was accomplished by using
sparks and exploding wires. The dome containing

the UTIAS air cushion vehicle (ACV) circular track
facility {(Ref. 13) was used as a still-air reservoir
for part of the experiments. Its major internal
diameter is about 42.7m. This provided waves free
from interference with walls and other objects.

For detecting weak shocks in the overpressure
range 5-100 Pa, a condensor microphone was used
{Bruel & Kjaer 4135 free field 6.3 mm (1/4 in) diaj.
Amplification of the microphone signal was provided
by a preamplifier B&K 2619. The response of the
microphone system was tested in the UTIAS Travelling-
Wave Sonic-Boon Simulator (Ref. 22). When measuring
without its protective grid at zero angle of inci-
dence, the microphone has an approximate minimum
rise time ty = 2.9 usec. The oscilioscopes used
were Tektronix types 555 and 535 with a type D
plug-in that has a bandwidth better than 300 KH:.
The microphone was calibrated with a B&K pistophone
type 4220, which gives a sound pressure level at
250 Yz of 124 dB.

In the first scries of experiments, sparks were
used as a source of N-waves. The sparks were gener-
ated by the energy released from a charged 7.5 uF
capacitor. The maximum charging voltage was 8 KV
and the discharge device was a thyratron. A micro-
phone was placed ahead of the measuring microphone
in parallel to get the trigger signal for the
oscilloscope. The source and microphone were set
up at 1.8m above the floor to avoid interference
from reflected signals.

Fairly extensive measurements were done by
using sparks at temperatures of 273-277 K and
relative humidities of 50-73%. Five source-recceiver
distances (4.1m, 4.9m, 9.8m, 15.6m and 21.6m) were
employed with four different charging voltages of
4.4 KV, 5.0 KV, 5.4 KV and 6.0 KV. This seriecs of
measurements is termed Series-I.  Another serics of
measurements (Series-11) was also done at a temper-
ature of 289 K and relative humidity of 50% for the
distance range of 11.8-19.0m and a charging voltage
of 4.4 KV.

fxploding wires were used to produce N-waves by
replacing the resistor in the spark circuit by a
thin nickel wire 0.125 mm dia and optimum length of
5 c¢cm. The sudden discharge of cnergy vaporized the
wire. The expansion of the metal vapour generated
an N-wave in the far field. The measurements were
done at two conditions for Series-IIl (T) = 277 K,
RH = 75%, r = 6.7m, 12.8m, 24.3m, S = 4.6 K\, 6.0
KV}, and Series-I1V (Ty = 280 K, RH = 87.5%, r =
24.3m, 29.3m, S - 4.6 KV, 6.0 KV), where T} is the
room temperature, RH the relative humidity, r the
distance from the source and S the charging voltage.

The vibrational relaxation times for oxygen and
nitrogen were evaluated by using the empirical re-
lation obtained from the absorption of sound waves
by Bass and Shiclds (Ref. 23), as tubulated in
Table 2.1. The vibrational relaxation time at room
temperature strongly depends on the absolute humidity
of the atmosphere, as water molecules significantly
reduce its value.

Representative oscillograms from sparks and
exploding wires are shown in Fig., 2.1. It can be
seen that both a spark and an exploding-wire source
make it possible to produce well-established N-waves
far from the source. In the exploding-wire experi-
ments, the N-waves were much cleaner than those
generated by a spark, especially with regard to the
rear shock. It was found that the wire length 1.
plays a significant role in shaping the rear shock
pressure profile. After testing several wire
lengths, a wire length L. = 5.0 ¢m proved to gencrate
the most symmetrical N-waves, and was used in all
subsequent runs. The microphones were set up normal
to the wire to minimizc any line-source ceffect.

In Figs. 2.2 - 2.4, the maximum (peak)} over-
pressure (Splpax» the half-duration ty and the rise
time ty arc plotted against the distance from the
source r. Figure 2.5 shows plots of tr vs (iplpax-
The data for different series are represented by
different symbols, which are common through Figs.
2.2 - 2.5, For the Series-1 experiment, the data
are plotted only for § = 4.4 KV and 6.0 KV to avoid
confusion.

In Fig. 2.2, the lines indicate the curves of
CP ) max r N, which are drawn from the arbitrary
points to fit the experimental data, where n is
termed the decay index of maximum overpressure.

The solid and broken lines correspond to the curves
for n = 1 and 1.4, respectively. For 100 ~ (AP pax”
20 Pa both spark and exploding-wire data show that
maximum overpressures decay nearly inversely pro-
portional with distance from the source, as estimated
from linear-acoustic theory. On the other hand, the
spark data show that the decay index increases below
20 Pa. This deviation from linear-ucoustic theory
can be attributed to real-gas effects arising from

)




vibrational excitation of oxygen (sce Section 4.4y,
It is noted that the same input energy does not
result in the same decay of (Aplg,y for different
ctiergy sources,  The exploding-wire source makes
for a stronger explosion in air than the spark
source tor the same discharge voltage. [t should
also be noted that the overpressure decays are
different for the diftferent series of spark exper-
iments despite the same discharge voltage.

In Figs. 2.3 ~ 2.5, the broken lines indicate
the tendency of the experimental data.  The half-
duration ty increases with r. The durations for
the exploding-wire experiment (85-135 isec) are
longer than those for the spark experiments (50-75
~sec). The rise times ty also increase with r,
while the maximum overpressurce decreases with r.
It should be noted from Fig. 2.5 that the rise
times tp are Jdifferent for the different series of
experiments and supply voltages at the same maximum
overpressure.

3. SOME ANALYSES FOR WEAK SHOCK TRANSITIONS

In this section, some analvtical solutions for
weak shock transitions are reviewed and discussed
in connection with the spark and exploding-wire
Jata, which were shown in Section 2. In Sections
3.1 - 3.5, some analytical solutions for viscous-
shock trunsitions are shown in cases of steady
planar waves, quasi-stationary N-waves and nonsta-
tionary planar waves, respectively. The analyvtical
solution for steady planar waves was derived by
tavlor (Ret. 5}, and will be designated as the
laylor solution or the Taylor shock transition.

The analytical solutions for quasi-stationary
N-waves and nonstationary planar waves were defined
hy Lighthill (Ref. 207, and will he designated as
the Lighthill solutions, or the Lighthill N-wave and
the Lighthill shock transition, respectively. 1In
Section 3.4, solutions for dispersed waves with
vibrational excitation are shown for a steady

plane wave, and an approximate expression is

derived tor the rise time of a fully or partly-
dispersed wave. The Taylor and Lighthill solutions
are extended to dispersed waves with vibrational
relaxation by using a bulk-viscosity concept, and
the extended solutions will be designated as the
modified Taylor solution and the modified Lighthill
solution, respectively. Some insight is also given
into the structures and rise times of weak spherical
N-waves,

3.1 Ulassical Tavlor Plane Shock-kave Transitions

In the following three sections, Sections
3.1 - 3.5, the e o or e onov -shock transitions
are vonsidered, where the vibrational mode of
molecular internal encrgy is assumed to be r -z,
Viscous, steady shock waves are formed as a result
of a balance between the wave-torm-steepening
tendency due to the taimite-amplitude compression
rconvection) effects and the wiave form-casing
tendeney due to the viscous-diftusion effects,
This balancing determines the thickness of a steady
shock wave and depends on the shock strength.

The classical Tavlor solution (Ret. 5) for weak,
plane shock-wave transitions 15 expressed by
Fighthill (Ret. 200 as
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for a shock wo.o travelling with steady profile at
a constant speed Ug, where v = flow velocity
relative to the ground; v = flow velocity at

X -+, ; = ratio of specific heats, x = distance,
t = time, - = diffusivity of sound, defined by
! -1 o
B Tty (3.2
where = RInematic Viscosity, .o = viscosity,
op = bulk viscosity duc to rotational relaxation,
Pr = Prandtl number.  All the thermodynamic and

transport coefficients, -, -, , ., .p and Pr, may
be assumed to be constant throughout the flow,
since the shock wiaves are weakh. The original
Taylor solution did not include the bulk viscosity
due to rotational relaxation as it appears in Eq.
(3.2). However, in the present paper, the term
Treler e D ? oo s used when it oincludes only the
effects of rotational relaxation in order to dis-
tinguish from the » 7770 7 77 e s 707 which
includes both the effects of rotational and vibru-
tional reclaxation.

From the weak-wave assumption, we have

v’al = |'p1/(,pl) 13,7

where 'p is the overpressure ('p = p - pp}ioap,
the undisturbed speed of sound; py, the undisturbed
pressure. Then g, 13.)) can be rewritten as

. - ‘ ay(x-U t) (p), -1
L0 AL Rt 2
Cp) L - ' P

where (Up)o is the overpressure at x » -7, Define
a dimensionless variable,

nl(x-Ust) (ﬁp)z

s — -F;»~— (3.5)
Then
:i;}, = .1 + exp { é:— :1J—1 (3.06)
or

Figure 3.1 exhibits the Tayvlor velocity or
pressure profile in a plot of v/v2 or (Ap)/(p))
against I. The variable Z is a similarity variable,
since the velocity or pressure profile can be
obtained as a unique curve against Z for shock
waves with different strength (Jp):/pl, and it will
he termed the distance parameter.

Three different definitions of shock thickness
for - arc also shown in Fig. 3.1. The thickness
{21y is defined by

vt . e e
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lh1s thickness corresponds to the velocity or den-
sityv-based thickness, and it has been used in some
literature for shocks of moderate strength. The
thicknesses (.2)) and (.2)g are defined by the
distances for the overpressure to vary from 10% to
90, and from 5% to 95%, respectively, of its equi-
librium value behind the shock. The last definition
was used by Lighthill (Ref. 20) for the shock thick-
ness derived from the velocity profile. From Eq.
13.0) or (3.7}, we can evaluate the values of (iI)g,
("20g and D)y as

2y = 1.607,

(M2)) = 5.127,

0 (AZ)) = 6.870

0

These will be termed the thickness parameters. The
second definition of the shock thickness (10-90%
overpressure) 1s used throughout this report because
it can give a reasonable criterion for evaluating
the thickness of a shock wave with an antisymmetric
structure, which is tfound in N-waves and in partly
or fully dispersed plane waves.

The actual Taylor thickness Lix)b and the
Taylor rise time ty, (10-90% overpressure) can be
related to the Taylor thickness parameter (1), as

. N
L U (3.8)
1) Crant) 4+ [.,p)l/p1

trom by. (3.5), where t}U is the Taylor rise time
corresponding to the Taylor thickness (ix)g. We
assume try = (x)g/a), since the wave speed is
nearly cqual to aj for very weak waves.

In Fig. 3.2, the Tavlor thickness (ﬁx)b or the
lavlor rise time t}u are plotted in a nondimensional
form against (p)2/p) for a range of (ip):/py =
1072 - 107 or (“p)> = 1 Pa - 100 Pa in the atmos-

phere. At NTP for air = = 1.333 x 10-5 m/s,
wpleo = 203, = 134, Pr = 0.7 and, from Eq. (3.2),
= 3.43 x 1072 m=/s. Using a; = 331.7 m/s, the

characteristic length and time are

- - 2 -10
1.3 x 10 m, ‘/a1 = 3.1 x 10 se¢
Therefore, for ('p),/p; = 10‘4’0r (p)2 = 10 Pa at
NTP, then (Cx)) = 5.3 mm and trg = lo usec, from
Fig. 3.2. The Tavlor thickness or rise time is
inversely proportional to the shock strength
L"pta/py. As the shock speed is weakened, the
Taylor thickness increases and tends to infinity
as (ply v 0.

'/a] =

As mentioned at the beginning of this section,
the balance between the finite-amplitude (nonlinear)
compression effects and the viscous-diffusion
effects determines the thickness of a steady shock
wave. As the wave is weakened, the nonlinear
effects are gradually diminished, while the viscous-
diffusion effects remain unchanged regardless of
the shock strength.
the diffusion effects exceed overwhelmingly the
nonlinear compression effects and broaden the shock
thickness to very large values. [n the limit of
(“p)2 ~ 0, the nonlinear effects disappear and only
the diffusion effects remain, so that the thickness
tends to infinity. However, in an actual case, the

steady structure of such a very weak wave would not

Therefore, for very weak shocks,

be realized because it requires an infinitely long
time for the wave to reach a steady state through
viscous diffusive action. In the case when the
shock strength increases, the nonlinear effects are
strengthened, while the diffusive effects remain
unchanged. However, the shock thickness cannot be
less than the molecular mean-free-paths, since the
shock compression process is after all a result of
molecular collisions. In other words, for strong
shocks, the shock thickness has a lower limit which
1s controlled by molecular-collision processes.

Figure 3.3 shows a comparison between the ex-
perimental and theoretical (Taylor) rise time typ
vs the maximum overpressure (Ap)pax. The Taylor
curves shown in Fig. 3.2 are reproduced for T) =
273 K and 290 K. As seen from Fig. 3.3, the rise
times for the spark data (Series I and II) are
shorter than the Taylor rise times for the same
maximum overpressure, while the rise times for the
exploding-wire data {Series Il1 and IV) are longer.
Both data do not coincide with the Taylor curves.
It is clearly seen that the Taylor rise times for
steady viscous shocks can give no reasonable explan-
ation for the observed rise times for weak spherical
N-waves. Therefore, another analysis is required
for this purpose.

3.2 Viscous Plane N-Waves

In this section, consideration is given to the
case of a ralanced N-wave, which is produced by
moving a piston forward and then retracting it to
its original position in a tube. The generated
plane N-wave gradually decays due to viscous effects
as it proceeds. Lighthill (Ref. 20) solved this
problem and obtained a similar solution for weak
plane N-waves, where the velocity profile is given
as

u = At (3.9)
1 + exp(X7/2°t)/ exp(Re} - 1}

where X is a coordinate measured in a frame of
reference which moves in the same direction as the
waves, with an undisturbed speed of sound a) and is
defined as X = x - a1t; u is the excess wavelet
velocity whose variations are responsible for the
wonivetioe effects and is defined as u = a + v - 4
{a is the local speed of sound, v, the particle
velocity); Re is a Reynolds number of each half of
the N-waves, which is defined 1n terms of the mass
flow in that half. For example, for the front half

1

X
n

Re = udX (3.10)

where X is the node u = 0 and is the diffusivity
defined by Eq. (3.2). Note that Re is not invariant,
but varies with time as the mass flow varies with

the decay of the wave. The »2lznced N-waqve means
that its total mass flow always vanishes as

udX = 0

-

From the nonlinear wave relation,

v (3.11)
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Using kqs. (3.3) and (3.11) and defining the
similarity variables

poott a -‘rL‘P-’ .S (3.12)
= Py NS
then from Eq. (3.9),
_ - 3 l
P=: i1+ _ﬁlﬂ._ii_l__ ( (3.13)

exp(Re) - 1

i

Figure 3.4 shows the pressure profiles for several
different Reynolds number Re in a plot of P against

For a given Reynolds number Re, we cun obtain
Pmax (the maximum value of P), I (the shock thick-
ness defined by 10-90% overpressure) and 7y (the
half length of the N-wave measured from the origin
to the point of 10% overpressure in the wave front).
Then the following parameters can be obtained:

), a (x) (ap)
A7 = = B — 3.
\¢1 (&% )P r m (3.14)
5 2
- .2 .5 _ 3 Xy Py MYy L) pax
“d 7 y+1 "d'max T P T P
(3.15)

where AX is the shock thickness corresponding to
Af, AX = Af/RE; Xg, the half length of the N-wave
corresponding to £4, X4 = £4v7t; (Ap)pax, the maxi-
mum value of (Ap). The parameters AZ and g corre-
spond to the shock thickness and the flow duration
of the N-wave with reference to the dimensionless
variable I, which is defined similarly to Eq. (3.5)
as

aIX [Ap)max

Z = - 5 (3.10)
’ 1

AZ is the thickness parameter defined in the previ-
ous section and I4 will be termed the duration
parameter. Dctails of the derivation of P,,, &I

and Z4 are given in Appendix A.

Figure 3.5 exhibits the pressure profiles for
the same cases as shown in Fig. 3.4 in a plot of
(8p)/ (3plipax 2gainst I - Zg, where Zg is the Z
at (Ap)/(Ap)par = 0.5. The solid line indicates
the Taylor solution for steady plane waves, which
is given by Eq. (3.6) or (3.7). The Lighthill
N-wave solution approaches the Taylor solution as
Zd * @ or Re + =, This can also be shown from Eq.
(3.13) as follows. Assume that P reaches its maximum
Pmax at 5 = fq for large Re. Then, approximately,

i
STt
=
o
el
~
¥

max  m
Put £ = &+ £' (A" << £p), then
St (1w exp6 ) 2B 1 exp(p 6]
’m m” max P max®

(3.17)

in the limit of Re + ~. Equation (3.17) has the

same form as Eq. (3.0), the lavlor solutxon since
Pmax’' can be replaced by 2 - Z(, where 20 is the
Zat £ = £, It should be noted that the shock
thickness decreases as the Reynolds number Re or
the duration parameter Z4 decreases for the same
maximum overpressure.

In Fig. 3.6, the ratio of the thickness para-
meter (2)/( I} is plotted against the duration
parameter 14, where (° u)u is the (1I) for 4 -
{Taylor solution) and is given by ('2)) = 5.127
this figure clearly shows the dependence of the
shoch thickness on the duration of the N-wave. As
the duration or the maximum overpressure increases,
the shock thickness approaches the Taylor value. As
the duration or the maximum overpressure increases,
the shock thickness approaches the Taylor value. As
the duration or the maximum overpressure decreases,
the deviation from the Taylor value increases.

In Fig. 3.7, the normaliczed shock thickness
(.X)/{*/a1) or the normalized rise time ty/( /u,-)
15 plotted against the normalized maximum over-
pressure (. P)max/Pl for thn normalized duration
Xg/(*/ay) or t4/(*/uy ) = constant. It can also
be seen from Fig. 3.7 that the shock thickness
or rise time decreases for a fixed maximum over-
pressure (4plg, . as the duration of N-wave de-
creases. This 1s the V-vin . 5+ described in
the Introduction.

[n Fig. 3.8, the cxperimental data of Ref. ©
are compared with the lLighthill solutions for
N-waves. The rise time tr is plotted against the
maximum overpressure ('plp,x- The solid lines
exhibit the N-wave solutions for tg = 50 .sec and
"0 w.sec which correspond to the half-durations in
the spark experiments. The Taylor rise time for
Ty = 273 K is also plotted against (/pimax. The
figure shows that the rise times obtained in the
spark experiments are adequately explained by the
Lighthill model of viscous (frozen) N-wave shocks
though the measured rise times slightly deviate
from the theoretical curves in the range of the
lower overpressure.

In Fig. 3.9, the experimental data are plotted
on a figure showing the ratio of the thickness
parameters (LZ)/(::)G vs the duration parameter 4,
shown in Fig. 3.6. The data cover the range of
Zd = 10-100, in which the spark data lie between
Zd = 10 and 60 and the exploding-wire data lie
between Zg = 50 and 100. Using the duration para-
meter 4, the data may be categorized into three
domains. Above Ig - 50, the measured (..l)-values
deviate from the Lighthill curve and steeply in-
crease with increasing Z4. In the range 24 = 15-50,
the measured (.Z)-values nearly coincide with the
Lighthill curve, a scatter of the data exists.

Below Zy " 15, the measured (.Z)-values again
deviate from the curve and steeply decrease with
decreasing Ig. The broken lines are drawn to
stress the tendency of the data.

Figure 3.10 shows a comparison between the
observed and Lighthill N-wave pressure profiles.
Typical profiles in the Series I-1V are plotted by
the broken lines in comparison with the correspond-
ing analytical ones, which are evaluated from Eq.
(3.13) to have the same maximum overpressure
(Ap)pax and the same half-duration tg as the experi-
mental ones, and plotted by the solid lines to fit
each other at the nodes of the N-waves. As seen
from the figure, the pressure profiles observed in
the spark experiments [Series I and II; Figs.
3.10(a) and (b)] nearly coincide with the analytical
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3.10(c) and (d)) deviate from those predicted ana-
lytically. The main difference between both
experiments is that of the halt-duration of the
N-wave. Figure 3.10, as well as Figs. 3.8 and 3.9,
suggests that the Lighthill viscous N-wave model
does not always explain the rise times of N-wiaves
over the entire range of tgq or 2.

3.3 Nonstationary Viscous Plane Waves

In this section, consideration is given to a
nonstationary plane wave, which is generated by
the impulsive motion of a piston in a tube. The
initially discontinuous wave-front is smoothed out
due to viscous diffusion and it tends to form a
final steady profile. It will be shown in the
succeeding sections that this process of shock
thickening (nonsrazionary erffesr) plays an important
role in determining the rise times of weak spherical
N-waves.

Lighthill (Ref. 20) has given a solution for
the nonstationary plane wave by solving Burger's
Equation. He obtained the following result:

u\
u(x,t) = = -
)
-yt 20t
; I . ’ dy
: uZ;X Ssu.t
N -X
s yexp : —
S 2
—y /0
L€ yoi- tdy
X-u,t
- (3.18)
in which the initial wave form is given by
u{X, 0) = u, tfor X - 0, and zero for x» - 0 (3.19)

where u; is the excess wavelet velocity for X -« --.

Using Eqs. (3.3) and (3.11),

! erf ol /Z -1
\ o - 2
Cp) .l S A 3 4
) N i g . N
2 Cerf, | =l &
| BRI TR

where Z and ' are the distance parameter and the
time parameter, respectively, defined by

(X - l u t)
2727y (Ap)z a 't
1 ) U= ——

P

3y
n

(3.21)

The complementary error function is defined by
(o
ertC(X) = i ] dy
X

Note that the shock strength (4p),/p) depends on
the piston velocity v, {= 2up/(v+l)] and is invari-
ant throughout the process. When t »~, Eq. (3.20)
becomes

" S R ———
ones, while the pressure profiles observed in the L) '; . exn (re1 Z‘——l (3.22)
exploding-wire experiments [Series 111 and IV; Fig. tpy, . L L. C

which 1s the Taylor solution for steady plane waves,
Eg. (3.0).

Figure 3.11 shows the pressurc profiles tor
several different time parameters in a plot of
("p)/ U pr2 against the distance parameter Z. The
pressure profile appreoaches the Tavior profile as
© =+, It can be seen that the shock thickness
("2} 1ncreases as increases [whether based on
maximum slope or 10-90% of ('p)/( 'p)2].

In Fig. 3.12, the ratio of the thickness paru-
meters (Z3/(°2)) 1s plotted against .~ . If we
define a characteristic-time parameter of shock
thickening 'y as - at (.Z)/ti:)é = (.99, then

!
w
w
Q
=

n
w
<
I3
w

trom which the corresponding time tg and distance

Xg dre obtained from Lg. (3.21} as

t X sAp), =2
cmm—— T . _— - d 2
N A LA T (3.23)

which are designated as the shock-thickening time
and distance, respectively. These are inversely
proportional to the square of the shock strength
(°p)2/p1- This means that it takes a progressively
longer time and distance to reach a final steady
state for weaker shock waves or for lower (&p)2/p;.
Physically, this tendency of longer shock-thicken-
ing time or distance for weaker shocks is attributed
to the decline of shock steepening due to nonlinear
tconvective) effects.

In Fig. 3.13, the normalized shock-thickening
timets/(*/all) or distance xg/(¢/a]) is plotted
against the shock strength (p)2/p;. The time
scale on the right hand side indicates the shock
thickening time at NTP in air. For ("p)2/p; = 10~
or (plz = 10 Pa, tg = 1 sec or xg = 330m. These
values suggest that the nonstationary effect on the
rise time or the shock thickness becomes very
important for weak shock waves, for it takes a long
time or a large distance to reach a steady state.
This result is of value in interpreting Fig. 3.4
or 3.5, which provides solutions for quasi-station-
ary N-waves at the final values after a very long
time without specifying how long it may actually
take. The above solution quantifies the time or
distance in specific cases. The spark and exploding-
wire generated N-waves, described in Section 2, are
also expected to be affected by this nonstationary
effect, since the maximum overpressures are below
20 Pa only over a distance of 10m.

3.4 Shock Transitions with Vibrational Excitation

The structure and thickness of shock waves
with vibrational excitation in air will be consid-
ered now. The analytical results of Polyakova,
Solyan and Khokhlov (Ref. 21} and Johannsen and
Hodgson (Ref. 12) for plane dispersed waves are
re-examined and compared with Holst-Jensen's data
(Ref. 6). Furthermore, cxtensions of Lighthill
solutions for N-waves and nonstationary waves to
shock transitions with vibrational excitation are
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made possible by using a bulk-viscosity concept.

For weak shock waves with vibrational excita-
tion, steady shock waves are formed as a result of
a balance between the wave-form-steepening tendency
due to finite-amplitude-compression effects and
the wave-easing tendency due to both effects of
viscous diffusion and vibrational relaxation. For
very weak waves, the compression effects diminish
and the wave-form-easing effects become predominant.
As discussed in Section 3.1 for uiscous or frozen
shock transitions, in the limit of (.p), > 0, the
nonlinear compression effects disappear and the
wave-form-easing effects remain, so that the wave
thickness tends to infinity. For weak shocks
whose strengths are slightly above the limit of
zero overpressure, the vibrational relaxation is
more effective than the viscous diffusion for the
wave-easing tendency. In this case, the compres-
sion process is so slow that the energy dissipation
due to vibrational nonequilibrium becomes predomin-
ant compared with that due to translational and
rotational nonequilibrium which requires a more
rapid change of the flow properties. As the wave
strength increases, the shock thickness decreases
owing to the increase in nonlinear-compression
effects. When the nonlinear-compression effects
overcome the wave-easing effects due to vibrational
relaxation, the frczen shock transition appears in
the compression process of the wave.

Figure 3.14 illustrates these two types of
shock transition with vibrational excitation
through pressure and temperature profiles. The
vibrational temperature Ty is also plotted tc show
the process of vibrational energy excitation. The
former wave dominated by the vibrational excitation
is called a fully dispersed wave, and the latter
wave including the frizen (relatively sharp, vis-
cous) shock transition is called a partly dispersed
wave. For strong shocks, the nonlinear compression
mainly balances with the viscous diffusion, though
it is accompanied by the slower process of vibra-
tional excitation. As shown in Fig. 3.14, for
stronger shocks, the temperature goes up to the
maximum (Rankine-Hugoniot) value through the frozon
shock compression and then it falls to the final
equilibrium state through the rvlarat!’~n z-ne as
vibration attains its share of ecnergy.

Polyakova et al (Ref. 11} have obtained an
analytical solution for the structure of stecady,
plane dispersed waves for nonviscous and noncon-
ductive gases as

y + Yo (v0 + V) V0
> = in
Lj (VO _ V)k‘l

(3.24)

where y = t - L/a,; £ = lLagrangian coordinate,

ae = equilibrium speed of sound; yp = constant of
integration; tj = vibrational relaxation time for
j-molecule; v = velocity in a moving coordinate
system, vg = absolute value of the velocity at the
spatial coordinate © » -+ =; k = mag/(2vpe);

m = (af? - ag2)/aeg?; ag = frozen speed of sound;

T (yvl)/Z.

In order to rewrite Eq. (3.24) using the
normalized overpressure (p)/(/'p)) and the distance
parameter Z, which were introduced in the previous
sections, introduce two quantities: the bulk vis-
cosity and a critical overpressure.

The bulk viscosity (Ly)j for the j-molecule
can be expressed as

2 P N
(“v)j = ".J.fo(af - a, ) = 1j.0mae (3.25)

for processes sufficiently slow, where .p is the
equilibrium density of the medium. Then the dif-
fusivity (7v)j for j-molecule with a bulk viscosity
(Hv)j can be expressed as

(‘v)j = (uv)-j/u0 = Ejmae (3.26)

This diffusivity will be used as a reference physic-
al property. It should be noted that the use of
this property does not mean that the vibrational
relaxation processes can always be replaced by the
bulk viscosity, which is valid only for processes
sufficiently slow.

The critical overpressure is defined as the
equilibrium overpressure behind a plane dispersed
wave whose wave velocity is equal to the frozen
speed of sound. When the equilibrium overpressure
exceeds the critical overpressure, the steady plane
wave is a partly dispersed wave with a frozen
(viscous) shock front, which is followed by the
vibrational relaxation region. When the equilibrium
overpressure is below the critical overpressure, the
steady plane wave is a fully dispersed wave with a
smooth transition, which is controlled by the vib-
rational excitation of the molecules.

The equilibrium overpressure across a normal
shock wave with vibrational excitation can be given
as 5 5
(%p),  2r(M7-1) + 21 (Me7, - e

_ __1
R CE S RV (3.27)

where My is the frozen Mach number, c; the vibra-
tional specific heat for j-molecule nérmalized by
the gas constant ¢; = ¢;/R in which ¢ is assumed
to be constant acrdoss the shock wave.” Details of
the derivation of Eq. (3.27) are given 1n Appendix
B. If the harmonic oscillator approximation is
applied to the vibrational energy level, the vib-
rational specific heats for Oy and Ny in air may be
written as

To e P00
C 0209 o Lexp -5 (3.28a)
S - 1
SRVET SRR W
N i
v 0.781 | — | exp |- T (3.28b)
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where T is the initial gas temperature (room tem-
perature), »; the vibrational characteristic tem-
perature 4 = 2239.1 K, vy = 3352 K. For My = 1,

we have the critical overpressure for the j-molecule
as

5
A . 2(v-1) "¢, 2
( p)cr,) . (v-1) c) - 20-1) c. (3.20)
pl (1¢1) » 2(y-l)cj Y+l Bl I
for ¢; -+ 1, which is usually valid for atmospheric

air, as very little vibrational excitation can exist
at nearly room temperature. The critical overpres-
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sure (ip)cp i Jdepends on the gas temperature Ty,
since the vibrational specific heat cj depends on
.

In Fig. 3.15, the critical overpressures
(MPler,0 and (3p)ep,o.N a¥e plotted against Tp.
The lines denoted by 02 and O2+N2 are calculated
from

(Ap)ct,o _ Z(W-l)z .
P, h v+l ‘o

(3.30a)

GP)p o 2(5-1)°
pl B 141

(eg * ) (3.30b)

respectively. That is, in the former case, only
the vibrational excitation for O-molecules in air
is taken into account. For (4p); £ (Ap)cyp j» the
steady plane wave is fully dispersed, and tor
(3p)2 > (Pler,; it is partly dispersed.

The diffusivity (év)j can be expressed by the
critical overpressure as

(\p) .. .
(\‘v)j z 1:1 alsz ___Shf;i for e << 1 (3.31)
© 1

The parameter k, which appears in Eq. (3.24), can
be rewritten as

(p)
L2 forc. <1 (3.32)
K Oy, )

That is, the parameter k is the ratio of the critic-
al and equilibrium overpressures. For k -~ 1, the
wave is a partly dispersed wave, and for k © 1 the
wave is a fully dispersed wave. The derivations of
Egqs. (3.31) and (3.32) are given in Appendix B.

Using the relation

R, %P%— (3.33)
vy <P,
then
- @p) - -
lsz—l (z-2g) = h »—«—21 in 1 - LR
! [ (“P)cr,j _l L (*Jp)z_,
r (AP)Z I 3
- -' in | LOR) (3.34)
R ) J N R T

from Eq. (3.24), where the distance parameter Z is
defined as

2’y o),
A e (3.35)
v'j P

in a similar way to Eqs. (3.16) and (3.21) in the
previous sections, it can be rewritten as

. (&p)
2 2

2=-L ) ° (3.36)
i+l 1 (Ap)cr'j

Zg is an arbitrary constant. Details of the deriva-

tion of Eq. (3.34) are also given in Appendix B.

Johannesen and Hodgson (Ref. 12) have also
obtained an exact solution for steady plane dis-
persed waves for nonviscous and non-conductive
gases, as follows:
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M) v 26105 4

X = —(,#l)Mf2 —
o
.ule u
2
l-Mf ) [ u}
+ ——— Lnl—7
u>
1 - = Y
u

1
! 2

- u u
2 72
1 + M - 1M - | = -
R A ] iy s U
- n [ —_ - ——-j (3.37)
1 - uz/ul LY

where u is the flow velocity, Uy, u, are the flow
velocities at x + ¢+ . Using the relations

[=9)

N (&4p),
1-.1=_12__2%P%. (3.38a)
Uy YMf Py =Pl
- u p), r
l_l__2=_1_.2 Ztl_%fg_ (3.38b)
iy a MS P Py

and neglecting the higher order terms of O(c;), the
same equation as Eq. (3.34) is obtained, which was

derived from the Polyakova et al (Ref. 21) formula,
by using the distance parameter defined by

alx (Ap)o 2. (Ap)v
- < - -2 2 (3.39)
(r‘v)j pl A .

-
2 =

Further details can be found in Appendix B. Equa-
tion (3.34) will be used as a solution for steady
plane dispersed waves.

In the limit of a weak wave (2p); - 0, Fq.
(3.34) tends to

wloo oo hoep o Tep
3 (2-Z0) = en t_l ﬁgTz ! n L(;p)z : (3.40)

This has the same form as the Taylor solution, Eq.
(3.7), in which the diffusivity # is replaced by
fv)i. In the limit of weak shocks, the shock
comp%ession process is infinitely slow, so that
the bulk viscosity concept may be applied to the
vibrational relaxation process. The solution, in
which the diffusivity £ is replaced by ('), or
* + (8,)5, will be called the modified Taylor
solution’

Figure 3.16 shows the pressure profiles for
several different values of (Ap)z/(Ap)cr'j in a
plot of (Ap)/(Ap), against 2-Zj. The curve for
(Ap)z/(Ap)cr ; » 0 corresponds to the modified
Taylor soluti&n. For partly-dispersed waves
[(4p)2 » (AP)er jl, there appears a discontinuous
shock front. The overpressure (Ap)f immediately
behind the frozen shock is given by

(dp)g .. (Ap)cr’j
(p), p),

(3.41)




In Fig. 3.16, the chain curve indicates the pressure
profile for ('p)2/(*Plcy,j = 2, in which the discon-

tinuous shock strength at™2Z = Zp is (Ap)f = 0.5(.p)).

The thickness parameter (Z) is defined by the
10-90% equilibrium overpressure, and can be related
to the rise time ty as

3 t ('4)):

' r <
2R — o s (3.42)
U U
For fully-dispersed waves where [('p)) © ('Pley il
then from Eyg. (3.34) >
3
== 9 = 5,127 = (") 3
M LR 2y (3.43)
regardless of the value of (p)a/(plep That is,

the thickness or rise time of a fully-diSpersed
wave, which is based on the 10-90% equilibrium
overpressure, has the same value of the thickness
parameter as the Taylor thickness or rise time, it
the diffusivity ('v)j is used instead of

In Fig. 3.17, the ratio of the thickness para-
meter (Z2)/(°2)) is plotted against the equilibrium
overpressure normalized by the critical overpressare
for tully and partliy-dispersed waves. [t can be
seen in the figure that the effect of dispersion on
(-2) remains up to (p)y = lO(Jp)Cr, This means
that the rise times for steady plane waves are
atfected by the vibrational relaxation up to (’pj, =
500-1,000 Pa in air, since ('p)cr_i = 50-100 Pa in
the usual range of ground temperatures (see Fig,
3.15).

The Lighthill solutions for N-wiaves (Section
3.2} and nonstationary waves (Section 3.3) may be
applied to fully-dispersed waves tor small (7P},
("Pler.j by replacing the diffusivity - with the
v1hrati&nal diffusivity (") in order to provide a
rough estimate of the J-»:v "and » v AN T
effects on the thickness or rise time of dispersed
waves with vibrational excitation.

g

Assume that,

a, = 331.7 m/s, - 10_5 sec,
1 J
. - u - 3 P
(”p)cr,j = 50 Pa, Py o= 101.3 KPa
then, from fq. (3.31),
. hl
(") =47 x 1077 m/s
v

(Compare with above for translation and rotation
of 3.43 x 1075 m/s, that is, the dispersed shock
structure is entirely controli~d by the vibrational
relaxation.)

10

(*)./a, = 14 x 10" 'm, Ja.? = a3 x 107 sec

viitol vijil
(Compare with &/a; = 1.03 x 10-7m and ‘/312 = 3.1 x
10710 sec noted above.) These values are about ten
times as long as the ones evaluated for viscous
shocks in Section 3.1. This means that the thick-
ness or the rise time of a planc dispersed wave 1s
about ten times as long as that of a viscous shock
wave for the same shock strength ('p)./py. The
shock-thickening time or distance of an impulsive
step wave is also tenfold greater for a dispersed
wave than for a viscous wave, as scen from Eq.

{3.23). For (.p)p/py = 1074 or (‘p)z = 10 Pa,
ts = 15 sec or xg = 5 km. This shows that it is
very difficult to obtain a plane dispersed wave
in a steady state on a laboratory scale.

As for the V-wave effect, the dispersed wave
is affected by the expansion behind the shock
front more seriously than the viscous wave, since
the tormer has a larger thickness than the latter
tor the same duruation and maximum overpressure.
Therefore, both the Vewaue and nonscationary
effects will seriously modify N-waves with vibra-
tional nonequilibrium.

In Fig. 3.18, the exploding-wire data are
compared with several theoretical curves in a plot
ot the rise time tp against the maximum overpressure
[ 'Plmax- The chain lines indicate the Taylor and
the modified Taylor rise times. The broken lines
indicate the modified Lighthill rise times for
N-waves of tg = 100 and 120 .sec. The vibrational
diffusivity (v tfor oxygen is used for the modi-
fied Tav'r and the modified Lighthill solutions.

All cuv. - are evaluated for the gas temperature
Il = 280 K and the relative humidity RH = 87.5%
(Series IV). The corresponding vibrational-relaxa-

tion time and the critical overpressure for oxygen
are about 5.73 .sec and 6] Pa, respectively. The
measured rise times are much shorter than the
modified lighthill risc times for fully-dispersed
N-waves.  This discrepancy can be attributed to
the » wovo Doeren effect.

Figure 3.19 shows a comparison between the
observed and moditied Lighthill N-wave pressure
profiles in a similar wav to Fig. 3.10 for viscous
N-waves,  Typrcal profiles from Series l-1V are
plotted using broken lines in comparison with the
corresponding analytical ones shown as <olid lines,
which are evaluated trom tq. i3.15), with replaced
by oyl The profiles have the same maximum over-
pressure O pipay and the same half-duracion ty as
the experimental ones, and 1t a4t the nodes of the
Ne-waves, By contrast to big. 3010 the discrepancy
between the observed anld analyvtical profiles s
clear.

lo conclude this section, consideration is
piven to a characteristic feature of weak N-waves
with vibrational noncquilitbrium,  Figure 3.20 illus-
trates a classatication ot weak N-waves by their
degree ot vibrational nonequilibrium.  The profiles
of gas and vibrational temperatures are plotted
under the following assumptions: (1} the maximum
(peak ) overpressures are below the critical over-
pressure for steady, plane waves; (i1) the maximum
overpressure is the same for all cases in Fig. 3.20;
[11i) onlyv one mode of vibrat.onal cxcitation is
considered. the N-wiaves can be classified
into five categories:  ta) quasi-equilibrium wave,
(b) moderatelv-nonequilibrium wave, (¢} highly-non
cquilibrium wave, (d) nearly-frozen wave, (¢) quasi-
frozen wave.

As seen,

The degree of excitation of vibrational energy
1s denoted by the vibrational temperature Ty, which
1s plotted by broken lines an Fig. 3.20. The time
lag between the gas and vabrational temperatures
corresponds to the vibrational relaxation time ',

In a quasi-equilibrium wave, the vibrational temper-
ature nearly follows the gas temperature. This s

the case where the concept of bulk viscosity is
valid and the modificd Tighthill solution for N-waves
may be applied.

The structure of the shock front s




vontrolled by the vibrational relaxation, that is, Then the basic flow equations can be written as:
the wave is a tully-dispersed wave. In a moder-

atelyv-nonequilibrium wave, an appreciable deviation U F ( 2
of the vibrational temperature from the gas tempera- T 3
ture can be scen.  In this case, the concept of bulk T
viscosity cannot be applied to the vibrational re- (4.1)
laxation, though the front structure is still )

controlled by the vibrational relaxation. This wave . Y u

can also be considered as a fully-dispersed wave.

In a highly-nonequilibrium wave, the front structure
1s controlled by both processes of vibrational ex- u = !
vitation and viscous dissipation. The wave becomes . .
A partly-dispersed wave in the sense that the front o Y
structure 1s partly controlled by viscous effect. e v . 0
Ihe structure of a nearly-frozen-flow frozen wave ’
1s mainly controlled by viscous effect, though
vibrational excitation still remains in the rest of .
the tlow field. In a quasi-frozen wave, the vib- v 0
rational excitation is marginal so that the whole -
flow tield can be considered as trozen. '

i e T
+r.'r : (.v_](lll 0”‘/) H 0

s Foelobepiy o, o= et

The discrepancy between the observed and ana- . r
vtical rise times and rsressure vrofiles described ' )
in the preceding sections may be explained by R 0
considering the above classification for N-waves.
The N-waves generated by sparks could be highly-
noneguilibrium waves or nearly-frozen waves, since )
the front structures seem to be mainly controlled 4
by viscous eftfect.  The N-waves generated by explod-
ing wires vould be moderatelv-nonequilibrium waves.
The coupling of the N-wave and nonstationary effects i, = 0

would make the situations even more complex. R R . ‘
el o
IS AN
1. RANUOM-CHOICE ANALYSES FOR WEAK SHOUK TRANSI - i ne NN
TIONS o Lo 5
p = .RT, [ O Ul e = S RT + 0ty
4.1 Basic bquations - - :
T (4.2)
fhe analysis is based on the following assump-

tions: where 3 = O {or plane flows and ) = 2 for spherical

flows, . - density, v - velocity, p - pressure,

{as the tlow 1s a nonstationary one-dimensional T - temperature, b - total energy, ¢ - internal
(planar or spherically symmetric) viscous, energy, R - gas constant, °; - vibrational energy
compressible atr flow. for the j-molecule (3 = U for oxveen and j = N for

nitrogent, 1. cqul librium vibrational energy

(hy The viscosity . and thermal conductivity - are for the j-molecule, o) vibrational relaxation
assumed to be constant, as the shock waves are time for the i-molecule.
weah .

Based on the harmonic oscillator approximation,

(¢) The gas 1s assumed to be thermally perfect: the equilibriun vibrational energy for the 1-melecale
the eyuation of state for a thermally-perfect {7y) can be expressed as
gas ts used. )

- R

{d) Both cases of calorically-perfect and imperfect A I f~*L—%quﬁ-] RN
gases are analysed. For calorically-imperfect e (xp(_f
cases trefeired to as real gases), the vibra-
tional relaxation of alr molecules are tasken where © is the characteristic vibrational tempera
Into account. owever, for most eof the analvses, ture foi the 1 molecule: o = 2239 K, 3 = 33s0 K,
only the vibrational relaxation of oxygen is wi - molar concentration for the §omolecule: e s
taken into account, since the vibraticnal-relaxa- 0,209, ey = 07810 The vibrational temperature
tion time of nitrogen is much longer than the Ty for the 3 molecule can alsa be defined as
duration of most N-waves analysed in this study. }
fhe eftfects of nitrogen vibrational relaxation R
are discussed only in the last part of this o= ——‘JL"fL—-—1‘> 1 4.1
section.  The harmonic-oscillator approximation ! exn| J'[r\,J
1s applied to the vibrational energy level.

el The rotational relaxation i1s taken into account The vibrational relaxation times for oxvaen ip
through the bulk-viscosity concept. The bulk and nitrogen ry are evaluated using the empirical
viscostity due to the rotational relaxation is relations  obtained tfrom the absorption of sound
assumed to be Lpo= (2/3). wiaves by Rass and Shiclds (Retf. 131, as tollows:
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{
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Py -1
o1 P 4, 0.05 + h
VT T }-24 + 4.4 x 10°h gy +hj (4.5)
—_ - T, vi=1
R ULV { 0
Nz ?Fiﬁ 39 + 350h exp --6.142 g—T- 1”
(4.6)

where po = 101.3 KPa, Ty = 293.15 K, h - ahsolute
humidity of air (%). As seen in Eqs. (4.5) and
(4.6), the vibrational relaxation times for oxygen
and nitrogen strongly depend on the absolute humid-
ity of air. In Fig. 4.1, 15 and Ty are plotted as
functions of the absolute humidity for p = 101.3
KPa (Ref. 12). The relaxation time for nitrogen is
two or three orders longer than the relaxation time
for oxygen. The relative humidity is defined as

RH = h(p/psat) (4.7)
where pgye 15 the partial pressure of water vapour
at saturation, and given by the Goff-Gratch equation
(Ref. 24) as
tog)o(p

sat/pO)

= 10.79586[1—(T0/T)] - 5.02808 loglO(T/TOJ

. 1.5047ax107% 121078 -29692{(1/To) 1]

v 0.42873x107 2110770955 (1-To/THT _

- 2.2195983

4.2 Numerical Method

An operator-splitting technigue was applied to
Eq. (4.1). The calculation is done for each spuatial

mesh in each time step using the following procedure:

1) The hyperbolic equations are solved for an in-
viscid frozen flow,

AU)

“t

als

4.9

where the subscript ! indicates the solution of
step (1),

{2) The spherical corrections are made by using the
values of the physical properties evaluated in
step (1),

V]

= iy

4.10)

13) The viscous diffusion equations are solved by
using the values of the physical properties
evaluated in step (2}.

3 b ]
—— = - =
.t : 2 or

T

‘Fj(‘Z-HHv]Z (4.11)

t4} The vibrational relaxation equations are solved
by using the values of the physical properties
evaluated in step (3).

.U4
T (HR)3 (4.12)

The final solutions are obtained in step (4).

The RCM is applied to step (1) and the explicit
method of finite difference is applied to steps (2)
and {3). In step (4), the integrated relation was
used. If one step is passed over among steps
(2)-(4), then the following solutions result: plane
flow, an inviscid-nonequilibrium flow or a viscous-
frozen flow, respectively. These are termed as a
plane solution, a real-inviscid solution and a
perfect-viscous solution, respectively. The full
solution including both c¢ffects of vibrational cx-
citation and viscosity 1s called a real-viscous
solution.

An outline of RCM is described below. Figure
4.2 shows an illustrative diagram for grid con-
struction and sequence of the sampling procedure.
The notations 'r and .t are increments of space and
time, respectively. For arbitrary integers n and
i, the propertics UT*‘ at time (n+1)°t are cal-
culated from the propertics U? at time n't. The
intermediate values UT:};E are cvaluated at time
(n + 1/2) t. In the region of i'r r - (i+l)’r
and n't * t (n + 1/2)t (surrounded by the broken
lines in Fig. 4.2), the Riemann problem (shock-tube
problem) is solved for the discontinuous initial
values

o ! i+ Ly
i+l 2
1 = {(4.13)
n 1 .
1l r 1+ 5 T

in this region. Then, for example, the solutipn
consists of a shock waye S, an expansion wave R

and a contact surtfuce ¢, as shown in Fig. 4.2. At
time an o+ 172)°t, the region i'r - r - {i+]l)'r can
be ¢ivided into four subregrons (1}-(3) (or five
subregions, it the interior of the expansion fan is
taken into account), and the physical properties in
cvach subregion can be determined from the solution
of the shock-tube problem for the initial condition

- . n+l/2 .
c115 0 The values “i*l/’ are equated to those of
nsl2 . T .
tl at peint I (r = r ; ir v (i+1)rj,
D P P
which is chosen at random.  That is, we assunie
n+l -l n+l/2 - : -
”1¢1" E UD . The chaice of P is made by a

rundom-sumbling technique in such a way that the
sampled points are uniformly distributed within a
finite-sampling frequency.
values of U?T:{{

values of HT and U

In a similar wav, the
arc¢ obtained from the initial

" At the second half-time

i-1
. n+ .
step, the values of H? ! are evaluated from the
LS WA n«j/2 . R
values of ”1—1/3 and “i01/2 as initial ones.

Godunov's iterative technigue is applied to solve
the Riemann problem.  As the vibrational energies
are assumed to he frozen, they are invariant
across the waves, and keep their anitial values,
whose boundary 1s the contact surtace.

In the second and third steps of the operator-
splitting technique, explicit fimte-ditference
schemes are emploved. The finite-difference forms
of Egs. (4.10) and (4.11) reduce to

n+l,

n+l ns+l
i —"“Hl)l]i t (4.1

llI:)l = [Hl)
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The multiple time step is used to evaluate (U:,)riwl

to improve accuracy. At the intermediate substep
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(4.16)

where the time increment 't is subdivided by k.
Most of the caleculations were carried out for k= 10.

In the Jth step, the vibrational relaxation
vgquattons tor air molecules

. o
RN ! (i= 0,08 (4.17)

are solved in ecach spatial mesh under the assumption
ot constant temperature and pressure, thereby vield-
img the analytical relation

ne+l . N+l
Loy = enosty
n+l t .
. _— ot - 0. N
| })c I ‘|] exp ti 0, NJ

(4.18)

the tinite-dittference schemes with multiple time
steps, similar to bg.o (4.10), were also applied to
. o307, and found to give the same results as
by 34,180, In order to reduce the computation time
Pg. 11 18) was used for most of the calculations.

As described an Section 4.1, in the present study,
only the vibrational relaxation equation for oxygen
wits solved (except Section 4.4.6). Furthermore, the
bulk viscosity concept was applied, instead of fig.
#3171, to the vibrational relaxation for oxvgen in
sections 13,5 and 1.3.6, in which the N-waves with
long durations were analvsed.

The condition of symmetry 1s 1mposed on the wall
boundary and at the centre of the sphere. That 13,
a4t the boundary 1'r

B v = ey (1.19)
ol 1y

tThe condition of continuity of gradient is imposed
on the free boundary. That is, at the free boundary

i r

11 U = U - u (4.20)

The entire programs are given in Appendix C.

)

)

4.3 Solutions for Plane Waves

As a check on the method, the one-dimensional
shock-tube problem was solved for a perfect-inviscid
flow, perfect-viscous flows and real-inviscid flows.
The thickness and structure of the shock waves are
compared with those obtained analytically in Chapter
3.

4.3.1 Perfect-Inviscid Solution

Figure 4.3 shows a computer plot of a perfect-
inviscid solution of overpressure (..p) against dis-
tance x for several time intervals for a diaphragm
pressure ratio Pgp = 2 and initial temperature ratio
T41 = 1. The overpressure (/p) is normalized by the
initial pressure pj, and the distance x is normalized
by the length of the high-pressure chamber xg (x* =
x/xg). The diaphragm is placed at x* = 1. The time
t is normalized by xg/aj (t* = ajt/xgy). After start-
ing the calculation or the removal of the diaphragm,
a shock wave as a discontinuous front propagates
towards the right hand side, and a rarefaction wave
propagates towards the left hand side. When t* =1
the head of the rarefaction wave arrives at the end
wall of the high-pressure chamber. The shock Mach
number Mg is about 1.16, and the normalized equili-
brium overpressure or the shock strength (lp)2/p;
1s about 0.403. It should bhe noted that, unlike
finite-difference schemes, the shock wave as a dis-
continuous front occupies one mesh jump without
smearing, where the normalized one-mesh size x* =
1/40.

4.3.2 Perfect-Viscous Solutions

Figure 4.4 shows a computer plot of a perfect-
viscous solution for the same case as Fig. 4.3. The
rarefaction wave reflects at the end wall (x* = 0)
and proceeds towards the right hand side. As expected,
smooth shock transitions due to actual viscosity are
obtained. 1In order to show thesc smooth transitions
clearly, a hypothetical chamber length x = 0.001 cm
was assumed at an initial pressure and temperature of
pp = 101.3 KPa and Ty = 273.15 K. Consequently,

t = 0.106 Lsec for t* = 3.506.

Here, 1t was not necessary to obtain the whole
flow field. The fine structure of the shock front
was important. Therefore, in order to save computa-
tion time, the calculation was done only in a con-
fined region ncar the front for the wave far from
the diaphragm, ncglecting the behaviour of the
rarefaction wave. Figure 4.5 illustrates the
region of calculation and a plot of the shock-front
path in the x*-t* planc. In the calculation, 30-80
mesh points around the front were used, and the
physical properties at cach mesh point were trans-
ferred back to two peints in the computational
space as the wave proceeds over two points in
physical space. The condition of continuity, kEq.
(4.20), 1s imposed on the free boundary of the
region of calculation. In Fig. 4.5, the white
circles indicate the perfect-viscous RCM solutions,
in which the position of the shock front is defined
as the po:ition of 50% of {‘p)2. The solid and
broken lines indicate analvtical shock and sound-
wave paths, respectively.  The numerical solution
for the shock path is in excellent agreement with




analysis,

Figures 4.6(a)-(¢) show perfect-viscous numeri-
cal solutions for the shock-tube problem described
above by comparison with Taylor's and Lighthill's
analytical solutions for the shock thickness, which
15 detined by 10-90% of (p)2. The ratio of the
thickness parameters (iZ)/[iZ)b, which corresponds
to the thickness or rise time normalized by the
laylor thickness or rise time, is plotted against
the time parameter T defined by Eq. (3.21). The
figures 1indicate that the step wave with zero thick-
ness 1s reduced to a plane wave with a smooth transi-
tion owing to viscous action, as the wave proceeds.
The broken and solid lines indicate Taylor's and
Lighthill's solutions, respectively. The various
numerical solutions are indicated by symbols. All
calculations were carried out for the same case as
Fig., 3.4 [Pyp = 2, Tgyp =1, Ty = 273 K, py = 101.3
KPa, Mg = 1.16, (p)2 = 40.7 KPa].

Figure 4.o(a) shows the effect of multiple time
step tor viscous correction. The mesh size is
SXY = 10 (Ux o= 2.5x1075 cm). The black and white
circles indicate the cases for k = 1 and 10 in Eq.
(4.10), respectively. The k = 10 result for the
transient behaviour of the shock thickness is closer
to [ighthill's solution. It is seen that the mul-
tiple time step for viscous correction improves
the result for the transient behaviour of the shock
thickness. The random walk due to the random
sampling 1n RCM and the overshoot of the thickness
value above Taylor's value can be seen. The mul-
tiple time step of k = 10 was used for all calcula-
tions described below.

Figure 3.6(b) shows the effect of the choice
of random numbers. The mesh size is 'x* = 1/80
{'x = 1.25x10°5 ¢m). The black and white circles
indicate the cases using the random numbers by
maximum-length linearly recurring sequence and
lincar congruential sequence, respectively. [t
can be scen that the latter method is in better
agreement.  Therefore, linear congruential sequence
was used for all other calculations in the present
study, as well as by Saito and Glass (Ref. 17). It
is also seen in Fig. 4.6(b) that the result is im-
proved by reducing the mesh size by half, in com-
parison with the result in Fig. 4.6(a).

Figure 4.6(c)} shows the comparison between the
RCM and MacCormack's finite-difference method (MFM),
which is shown in Appendix D. The MFM solution is
in poor agreement with Lighthill's solution. Its
thickness or rise time values are much larger than
the analytical ones owing to the effect of artifi-
cial viscosity. The RCM solution with operator-
splitting techniques is superior to the MFM solution
for the same mesh size, although random scattering
of the thickness or rise time values do occur.
Better agreement with Lighthill's solution was
attained by using a finer RCM mesh as shown. Com-
puter costs would limit the ultimate mesh size to
he used.

In Fig. 4.7, the normalized overpressure (Ap}/
('p)> is plotted against the distance parameter I
at times © = 0.99, 45.0 and 58.3 for cases of
'x = 1.25x10°3 cm [white circle in Fig. 4.6(c)). The
oritgin of 2 is taken at the place of (4p)/(ip); =
0.5. The solid lines indicate Lighthill's solution
for the transient state at ° = 0.99 and Taylor's
solution for the final steady state at : » ~. The

RCM pressure profiles show very good agreement with
the analyses. This result suggests that the RCM
with the operator-splitting technique may be
applied to analyse the transient behaviour of a
viscous shock structure, though some random walks
and overshoot above the Taylor value were observed
for the thickness or rise time data.

4.3.3 Real-Inviscid Solution

The initial conditions (Pg) = 1.0018, T3; =
1.0, py = 101.3 KPa, Ty = 303.15 K and RH = 90%)
were chosen so as to give a fully-dispersed wave
in the final steady state for a real-inviscid flow,
and to give a fast approach to the steady state
in order to reduce the computational cost. Only
the vibrational excitation for oxygen molccules
was taken into account for atmospheric air. The
corresponding relaxation time for oxygen is = =
1.04 usec and the characteristic time using the
bulk viscosity (°y)( for oxygen is (“y)g/a}?
§.4x10710 sec. The equilibrium shock Mach number
Mo = 1.0004 and the equilibrium overpressure is
("p)2 = 91.1 Pa, which is less than the correspond-
ing critical overpressure for oxygen ('P)cr,O = 95.5
Pa, so that the wave may become a fully-dispersed
wave in the tinal steady stuate.

Figure 4.8 shows the transient behaviour of
the pressurce and temperature profiles of the dis-
persed wave obtained for the condition described
above (xj = 0.5 ¢m and "x = U.0125 cm). The solid
lines indicate the pressure and temperature profiles,
which are the same in normalized plots of ('p)/('p)2
and ("T)Y/('T) as the wave is very weak. The broken
lines indicate the normalized vibrational tempera-
ture profiles ('Ty)/('Ty>. Ten profiles are shown
for the time parameter = = 0.0003, 0.41, 0.81, 1.6,
3.3, 4.9, 6.5, 8.1, 9.7 and 11.4 or the normalized
distance x* = 1.2, 30, 60, 120, 238, 360, 176, 593,
716 and 830, where - is defined using the bulk vis-
cosity (‘y)p for oxygen as =[313t/[‘v)0][1p)2/p1]ﬁ
The calculation was also carried out only for a
confined reg¢ion near the front for the wave far
trom the diaphragm, similar to the perfect-viscous
flow as shown in Fig. 4.5. The initial step wave
is smoothed out owing to the dissipative effect
of the vibrational relaxation. It should be noted
that this process which smears the wave is largely
different from that of the viscous wave. This
tendency of smoothing has been shown analytically
for linear waves (Ref. 25) and for nonlinear waves
(Ref. 26). In a transient state, the wave is a
partly-dispersed wave with a frozen shock front,
even if the ecquilibrium shock pressure is below
the critical overpressure. This suggests that the
nonstationary effect is more important for dispersed
waves than for viscous shocks.

Figure 4.9 shows plots of ('2}/('2)) vs : for
real-inviscid shocks. The solid and broken lines
indicate the modified Lighthill solution and the
modified Taylor solution, respectively. The symbols
indicate the RCM solutions for 'x = (.025 cm and
0.0125 cm, respectively. The latter case corresponds
to the one in Fig. 4.8. The RCM solutions of shock
thickness show random walks and overshoot above the
Taylor value, similar to the viscous solutions shown
in Fig. 4.6. The thickness tends to approach the
modified Taylor value using the bulk viscosity for
oxygen vibrational relaxation. It should be noted
that the shock-thickening time of the RCM solution
is nearly the same as that of the modified Lighthill




solution, although the (fZ),LL:)Q Vs plot of the
RCM solution deviates trom Lighthill's solution
owing to the Jdifference in the transient-wave
protiles between the two solutions shown in Figs.
S.11 and 4.8, That is, the shock-thickening time
based on the modified Lighthill solution provides
4 reasonable estimate.

In Fig. 4.10, the normalized overpressure
P (Cpi2 is plotted against the distance parameter
Zoat - 25,0 and 27.6 for the case of ‘x = 0.0125
o (white circle in bFig. 4.9), where I is also
detined using the bulk viscosity for oxygen vib-
rational relaxation. Tthe solid line indicates the
analyvtical selution for ('p)2/(iplep g = 0.954
cvialuated from Eg. (3.34) for steady dispersed waves.
the RCM pressure protile tor - = 27.0 shows very
voud agrcement with unalysis, but the @ = 25.0
solution shows a slight deviation ‘rom the analyti-
val one at the upstream side ot the front. This
deviation would be attributed to the randomness
assoctated with the RUM solution.,  However, in
cenerdal, the ROM solution tor reual-inviscid flow
vrovides very reasonable results,
1.3 solutions for Spherical haves
As descoribed an Chapter 3, the shock structures
ot spherical waves may be aftfected by N-wave and
nonstationary ettects and would be different trom
those of pluane waves in some situations.  The pur-
pose ot this section s to show some characteristic
fratures of transient behaviour of shock structures
ot spherical waves through the RCM analvsis associ-
ated with the spark and exploding-wire experiments.

Iwenty-three cases of numerical results
presented an this section for spherical waves,
termed as cdases AL, A2 oL BE, B2, ..., O, G2, L.,
DL, D2y, respectively, The A-sceries (AL, A, .. i
corresponds to pertect-inviscid solutions; B-series,
perfect-viscous solutrons; U-series, real-inviscid
solutions; and D-series, real-viscous solutions.
the parameters, which should be given as initial
conditions, are the radius of the pressurized
sphere ry, the pressure and temperature ratios
Pyp and Tg) across the anitial inner pressurized
air and the ambient atmosphere, the atmospheric
pressure ppoand temperature 1y, and the relative
humidity RH.  These are tabulated tor cach case
in lable 4010 Be assumed py o= 10103 KPa for alld
cases.  The relaxation time and the spatial
meshes r*oand roare also tabulated in Table 41,
The atmospheric conditions (11 and RH) are chosen
trom data in the spark and exploding-wire expert

ments described in Chapter O iScries | (AR

are
s, and

In the ¢
vibrational excitation
for oxygen vxoept case

and U-series analyses (real gases), the
is taken 1into account only

DY, 1n which both vibrational
exvitations tor oxygen and nitrogen dare included.

In cases D3 through DS, the vibrational relaxation
tor oxygen is evaluated by using the bulk viscosity
voncept tnstead of solvaing the relaxation cquation
for vxygen.

ool Near-tbreld soluttons for Pertfoct Invisoid
Flows i
Inorhis section, pertect imoascnd solntions
tor spherioal waves are shown in the near field of

the pressuriced sphere The process of N wave

formition from an explosion of a pressurized air
sphere and the effects of the pressure and temper-
ature ratios are discussed.

Case Al is a perfect-inviscid solution for
P41 = . in the near-field of a pressurized sphere,
Figures 4.11(a)-(c) exhibit computer plots of
overpressure distribntion at various times after
the explosion.

Figure 4.1, 4 shows the initial process of
explosion ot a pressurized air sphere. The front
shock, which is formed immediately after bursting
the sphere, decuays as it propagates outwards,
leaving an expanding -lTow behind it. The rare-
faction wave, which propagates inwiards into the
sphere, reflected at the centre of the sphere and
produces a highly rarcfied region behind it. A
second imploding shoclk wave of ever increasing
strength is formed at the boundary between the
inner and outer expansion regions.  Some ''noisc”
in the pressure profiies in the expansion region
can he attributed to the random walk inherent in
the RCM. Ihe comparison between near-field solutions
of the explosion of a pressurized air sphere using
Lax, MacCormack and Random-Choice methods for a
perfect-inviscid tlow is given in Appendix i

The succeeding process of N-wave formation is
shown in Fig. 4.11(b). The imploding second shock
reflects at the centre of the sphere and produces
a4 highly compressed region around it. The reflected
second shoek 1s initially very strong, but rapidly
decays at it proceeds outwards. [t follows the
tront shock and forms the rear shock of an N-wave,
Figure 4. 11¢¢y exhibits the propagation of an
established N-wave, which maintains a similar
protile as it propagates outwards. [ts maximum
ipeak) overpressure decays gradually and the dur-
ation increases slowly,

Figures 4.121a1-1di show a comparison of
cutablished N-waves tor cases Al-Ad. Figure 4.12(a)
exhibits a pressure protile tor the same cuase as
Fig. d.11(cr, though the mesh size is increased to
“r* o= 110 to be compared with cases A2-Ad, In
case A2, the temperature ratio Typ is twice that
tor case Al.  In casce A3, the pressure ratio Pyy is
increased trom 2 to 9. In case A, both pressure
and temperature ratios are higher.  Figure 3.12(b)
shows that case A2 results in g more svmmetric
N-wave thuan casce Al owing to the hotter sphere,
which cnables the second shock to form sooner.

This supgeests that the halt-duration of the nega-
tive overpressure of an N-wave can be controlled
through 4 chotce of lyy. Figures 12(¢y) and 12(d)
show that tor higher Py and Tygy the N-waves
vencrated by oa spark or an exploding wire cannot
be simulated using a pressurized-sphere explosion
made 1.

As seen in bigs. d.12(al)-1d), the overpressure
protiles of the positive phase show only a slight
change 1 shape regardless of Py and 141 talthough
‘poand the durations are different).  However, the
negative phases strongly depend on these ratios.
The Jength of the posative side is of the order of
r* - 1 or r - rooan cach case. That is, the half-
duration of an N-wave 1s determined mainly by a

choice ot the sphere radius within the range of
1y and [y consaudered here.
use s made of 14y 1,
analvsis,
shock

In the tollowing,

in order to simplify the

1s tocussed on the front-
this work.

attention
the N-waves in

S1nce
structures ot




Voboo Jemparason Between Perfect-lnvis

Viscous, R
bar-Ficld solutions

¢id and Real-Visco

the calculation tor cases AS, Bl, Cl and bl
were carried out for the same parameters in order to
mahe the comparison clear between perfect-inviscid,
pertfect-viscous, real-inviscid and real-viscous
sclutions in the tar field.  the vibrational excita-
tion tor oxvgen was taken into account for real
cases (U and DY . The ambient conditions corre-
spond to the series-] experiment, and the relaxation
time (o = 15.6 .s¢¢

The results are shown in Figs., J.153-4.17.
Fagure 4.15 shows the path ot the shoch tront by
piotting the centre of the tront [0.50 plyax]. The
norzalized radius r* and the normalized time t* are
defiined by r* = r/ry and t* s agtir, respectively.
the =olid lTine indicates the path of a sonic line.
It 1~ scen that away from the cxplosion the front
path nearly coincides with the sonic-line path,
this result indicates the validity of the method of
solution with regard to the propagation of the wave.
{he calvulations were also carried out only 1n a
contined computational region near the front in the
tar-frehd as well s the caleulations for plane
wibes shown an Fig.

e maximum overpressure | ppax! for spherical
wates decay with increasing distance votrom the
centre. Acvording to classieal acoustice theory
X ol tor weak spherical waves.  However,
rownoan the following, the decay ot the maximum
overpressure can deviate from classical theory af
the etffects of viscostty and vibrational nonegutli-
brium are taken anto account.  In order to readily
cvaluate the decay rate of the maximum overpressure
the decuy radex s aotroduced, where nops detfined
tocally as poyo o 1 "o Inogeneral, the value of
novaries with oy while n = b oapplies to sphevical
ACOUST IV Wdves

Froure b1 shows the decav of the maximum
overpressure tor four cases as g tunction ot the
distance v in the perfect -invaisctd solution (case

\50, the maximum overpressure decays at a rate
mversely proportional to v oin = 1) for {Pigax
lov Pa,  though n I tor P lmax 100 Pa.  In

other cases, BlL, C1 and D1, the decay indices n
merease for plgo 100 Pa due to the dissipative
cttevts of viscostty and vibrational nonequilibrium
in comparison with case A5, While almost the same
overpressures are obtained for phpax 100 Pa for
all cases ancluding case A5, at r = 20m, n = 1.25
ror case Bl and n = 1.305 for cases €l and vi. The
deviation from the classical acoustic theory for

P max oo Peo1s attributed te the monlinear
cttfects an a wave of tanyoe o litude,

Fiyure 4.15 exhibits the half -duration tg as a
tunction of distance r.  The rapid increase of ty
near the centre is attributed to nonlinear effects.
In cuse A5, ty 1s constant for {'plyax 100 pa,
while tnocases B, €1 and D, ty increases with r
due to disstpative effects of viscosity and vibra-
t1onal noneqguilibrium,

Figure 1.16 shows the rise times ty as a func-
tion of distance r, and Fig. 4.17 shows the pressure
profiles at several locations for cases A5, Bl, (1
and DL The perfect-inviscid solution results in
4 discontinuous front so that tp = 0 in this case,

unlike the smoothing causes by artificial viscosity
in finite-difference methods. As sceen in case (1,
the effect of vibrational nonequilibrium contributes
to ty only for weakh waves. The rise times for the
real-viscous case Pl oare almost the same as the
rise times of the perfect-viscous case B1, until
the effect of vibrational nonequilibrium becomes
noticeable.  The viscous effect plays a dominant
role 1n determining the rise time in these cases.
However, the vibrational noncequilibrium plays an
important role in reducing the maximun overpressure.

The protilc of the perfect-viscous transition
at r o= 2b.om [Fig. 4.17(b}] is not similar to
cither the profile for a steady plane wave ‘Section
3.1), the quasi-stationary N-wave for moderate
Reynolds number (Section T.2), or the nonstatiocnary,
plane wave (Section 3.21. This shows a character-
istic feature of the nonstationary effect for
spherical N-waves.  Figure d.17(¢) indicates that
the wave 1s a partly-dispersed wave with a discon-
tinuous tront, cven though the steady plane wave
hecomes o fully-dispersed wave witt a smooth trun-
sition tor the corresponding overpressure at v =
Jloom (Section 30000 Again, this 1x a nonstationary
effect for dispersed waves, which 1s discussed an
section 1.3.3. The nonstationary dissipative
effects due to viscosity and vibrational noneguili-
brium are coupled in the veal-viscous solution
[Fig. 1.17vdh .

The results for cases A3, Bl, 1 and D1 show
that the decay behaviour of the masimum overpressure,
the halt-duration, the rise time for the shock thick-
nesstoand the press<are profile of a weak spherical
Nowave can be atftected by both vaiscosity and vibra-
tional nonequilibrium.  This <hows that both cffects
must be taken into account when analvsing the shock
structure of u weak spherical Newave.

1.4.3 Swmulations foy

spark and Faploding
venerated N-waves

-Wire-

In this section, the namerical simulations
are shown ftor the spherical N-waves, which were
generated from spark and cexploding-wire sources,
described in Chapter 2. A requirement was set
for the "o 0 of weak spherical N-waves that
the caleulated maximum overpressure (plp,y and
the half-duration ty should coincide with the
experimental values at a specitied location r.  This
requirement can be fulfilled by giving appropriate
values to the initial pressure ratio Pyy and the
radius ry of the pressurized sphere. However, in
practice, the adjustment of the values of Py, and
ro is a laborious task in order to match required
vialues of ("pip,y and ty at a speciiied location.
Several trial calculations were needed to get the

final result. Cases B2, €2, DI, D2 and D3 are
the results of o~ 7o " for the spark and

cxploding-wire data.

in Figs. 4.18-1.21, the results of the numerical
calceutations are compared with the experimental data
by plotting ("Phypyx VS U, tg vs v, ty vs v, and
tey vs (Uplpax- In these figures, the experimental
points are plotted by white symbols and the numerical
ones by black syvmbols.  The seolid and broken lines
denote the anterpolated Lines for the numerical and
experimental data, vespectively, In Fig. 4.21, the
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broken lines denote the Lighthill rise tames for N
wates with tj S0 and 7O Lsec, and the chain line

denotes the favlor rise time tor steady, plane waves.

the dabrupt changes i rise time are attributed to
the randomness anherent in the ROM.

Proures dbols and 4019 show that one can simul -
At the change of {Uplygy and tg apainst r by g
proper chotve of vpoand . Carves B2 and ¢ e
e Polooand 121 andicate that the pertect-
Viscous B2 and real-inviscid (02 solutions
cannot sanulate the nonstationary behaviour of the

Pise Drme, even o Py and tgocan be osimulated
cortnatov s darves BE B and DA oandicate that the
rodl oviscous solutions simulate the experimental
resants roeasonabliyv o well, when one considers the
tlew complonities at the spark discharge and explod-
wire.  curves DL D2 and DS alwost simulate the
Yor series T, b and IV orospectively,

seneral tedtures of the results can be
samrartoed as tollows:
T 1 X

1 wodeay andes o wan cvaluated from the

sertes boand TEospark data s about 1A5, while tor

e scadated spark ocase DEoono= TR0 at o ro= O o
4 1ol at 1 the Jdeviation ot the
Trors the Tinear acoustic theory (no= 1) s

reasanab by owell and can be o attributed o

dissipatite offects of vaiscesity oand vibrational

v Por o onvaeen,

nalt Joration tgoancreases with o roobay

- d o
Lol Pt~ vate of ancrease as odbout oo seoow
and simmdates the experimental data. The increase

of 0 may also be attributed to dissipative eftects

o viscosttyoand vaibrational nonegui libroum tor

CAM T

N the spark data vseries Dand [Ty and therr
sulation tor rise time rcases DDoand D2yoshow

that the shorter relaxation time (500 L sec, vase B2

cives The loneer rise time,and the Touver relasation

HEEECES SOt ~ev, vase B oaves the shorter rase

tome. This tendenvy 1s due to the nonstationary

cftects The teng relavation time onves thoe slow

vate ot chanve ot the shock thickness, as discussed
mosections s b oand 4U303,0 so that the rise tame

waans short cien for weak waves. turther discus-
sion about the eiffedt ot redaxation time on ty will

Beowsven an the succeeding section,

Voo The eaploding wire data (series IV and their
~imabation rcase D3 oshow, by comparison with the
spark data, that the stronger explosion and longer
Juration give the longer rise time tor the same
overpressure thg, V2o This s agaan due to
the nonstationary oftects, The strong explosion
Sives a o stower rate of change of the maxinum over-
preossure tfor the same overpressure (see Fig. 4.18)
so that the rise time has cnough time to increase,
furthersore, a longer duration provides a margan
tor o reasang the rise time. This eftect will be
disansased an wore detanrl an Sectron V45

Fronres 122040 -(¢) show the pressure, tempera-
ture and vibrational-temperature profiles at
several locatt ns tor real-viscous cases, DI, D2
and DAL respestavely The sobid Tines indicate the
pressure and temperature protiles, which are the
same tor weak waves in normaloced forms of (p)
Proge and /0 gk The broken hines andicate
the vibrational temperature 1n a normalized form of

1o

o “m;nx’ where Ty o 1y Iy

Froure 32200 shows the spmulation for the
spark iseries Tyoexpermment . The wive profiles are
shown at o= 027w, 208, 7 530, 90 8m, 12 0dm,

I5.0m, 18 . om and 1. om, and the maximum overpres-
sures arce lo6. Pa, P35 Py 360 Pa, 2500 Pa, 17T
Pa, 13.2 o, too b Paoand S05 Pa, respectaively, As
seen, the peak pressare and temperature become
praduably binnted due to the energy transtoer from
the translational and rotatironal modes to the
vibrational mode, while the back rexpansion)
prossure and temperature protile becomes pradually
rounded due to the reverse energy transtoer from
the vibrational mode to the translational and rota-
tronal modes.  This arises owing to slow-relaxing
behaviour of the vibrational encrpy and leads to
an clongation of the half Jduration.  The shock
thickness or the rise time is mainly controlled hy
the dissipative effect of viscostty, though it s
only partly attected by the epersy transter from
the translational and rotational modes to the
vibrational mode for wiaves at I om and 20 ooo
In a sense that the shock fYront 1< wammdy controlled

by viscous dassipation, these waves may he called
partly dispersed wives,

Figure 3,220 exhibits the simulation tor th

spark fseries P oxvpernments The wave proviles
are shown at o vos= 0. 0, Tooom, oSk, 6, 2Th, SU3T
1o o™m, 1o 9, 1o Im and 19.0m, and the maximam
overpressures are bool Pa, 131 Pa, Ao Pa, D500 Pa,

1707 Pa, 15,0 Pa, oot Pa, 805 Pa oand 0 33 Pa,
respectively, approximately an oaccordance with the
maximum overpressures an Figl o2 2ans dhe difter
ence an o profiles between cases Doand D2 can readily
be seen. I ocase DYy the process ot peak-blunting
occurs between o= oo and JU5Nm or 0 pig L
Poaoamd 131 1, while inocase Dot occurs betwed
r UM oand 2loomoor 0 piggy - S8 Paoand S50
P This can be attributed to the dittferences in
vibrational relaxation time for oxveen and initial
temperature: I PO IO O B JTA R ocase DL,
and Sltser, O8O R case P2 In ocase
o the shorter relaxation time, the peak blunting
occurs in the carlier stage when the shock thickness
rsostllorelatively thin, furthermore, in case of
the higher mmitial temperature, more energy s
reqired to o eacirte the vibrational mode <o that

the eftfect of vibrational excitation appears tor
wiaves at higher maximun overpressure.  In the

range v SO3Tme 0 0m o pipag 1T e 170 Py
the tront structures are moanly contralled by
vibrational oxcrtation and the wave protiles nearly
follow the vibrational temperature profiles owing

to the energy transtfer to the vibrational mode.  In
this sense, the waves mayv be called fallv-dispersed
waves in this ranve.  However, it should be noted

that the viscous dl\\lp.n ton also playvs an amportant
role in increasing the shock thickness or rise time,
by contrast with stemdyv, tully dispersed, plane
wiaves, as oscen oin Frgs o oo and 40210 an o whach the
real -viscous soluttons b2y are compared with the

pertect viscous and real anvisend solutiens (B2, 0

Figure 1.22000) shows the smmalation for the
exploding wire (series IV evperiment. The wave
profiles arce shown at r nodNe, L 13m, 003m, 13.0m,
IS 3m, 23 bm and 29.3m0 and the maxaimam overpressures
arc 1670 Pa, 133 Pa, 8201 Pa, 359 Pa, 25,0 pa, 17,7
Pa and 11,1 Fa, respectively . The wav below 35
Pashow characteristic features of fullv-dispersed
wives, though the shock thicknesses are different
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trom the ones an kg, 4.22(b) . The peak-blunting
ovvurs between ro= o 13moand o 3dmL Figures 3000w
¢ oshow that wide variations of wave profiles dare
possable depending on combinations of relaxation
time, initial temperature, half-duration, and
strength ot explosion.

In iaes. 4.25 and 4,24, the calculated pressure
protiles are compared with those observed at scveral
tocations tor series §oand 11, respectively.  Fipure
o285 shows g comparison between case DI and series |

profiles at r o= 4.85m, 15.0m and 21.6m, while tig.
P2V shows g conparison between case I oand sertes
[T protites at r - 11.7m and 19m. The soltd and

brohen lines indicate the numerical and experimental
pressure protiles, respectively, the shock transi-
tion and cverall profiles are simulated reasonably
well, ot we censuder the diffaculty of adjusting gy
and ry to wet the required values for @ piggx and ty
at the desired positions ompare with fapgs. 3010
and Ao e the Daghthal D and moditied baghthill

pressure proviloes,

In bPro~o 3005 1027, the tull Nowave profiales of
temperature and vibrational temperature
are plotted at the longest distances of observation
moseries LoD and IV ter cases DEA, D2A and D3AL
In order to save computation time, the full N-wave
selutions were obtamed with larger mesh sices,
which were twe or three times as large as those for
the halt N wave solutions tfor DI, D2 and D3 shown
above.  these frgures show that the transition
protales and rise times of the rear shocks are
ditterent from the tront shock Jdue to the Jdifference
i vibrational nonequiisbrium,

prossuare,

In Tig. 428, the caleulated tull N-wave
protile of pressure 1s compared with the observed
one at UO03m for series IV, in which the full M-
wave profiles were obtained (Ref. o). Although the
calvulated haltf-duration ty is 200 longer than the
observed one, both protiles are similar.  The
precise simulation for full N-waves would require
an adjustment of the anitial temperature ratio Ty
i addition to the tiner adjustment ot Py and rg.
This may be done 1n a tuture study.

oot tfYects of Vibrational Relaxation lime

The purpose of this section is to show the
effect of vibrational relaxation time more clearly
by comparing cases D2 and D4 The initial pressure
ratio Pgp and the sphere radius rg are the same for
both cases, but the initial temperature and humidity
are different and gives rise to a g of 5.51 and
15.6 .seo, respectively.  tthe initial temperature
and humidity of case DY correspond to case D)

Fraures 1.29-3.310 show ("plg., tg and tp as
functions of r. fhe discontinuous change of ty in
Fig. 3,31 1~ also attributed to the randomness
which appears in the RCM solutions.  Figure 4,50
shows o comparison ot both pressure protiles at the
same Jrstance r 19m.

The attenuation behaviour o7 (0, (Fig.
1,291 is slightly affected by the vibrational retax-
ation times for these cases.  The decay indices at
ro= 20mare n = 1,31 tor D2 and n = 1.40 for DI,

As casily seen in Figs. V.29-3.31, ("pigag »nd ty
are not affected appreciably by the ditference in
o but ty i1s very much affected by it.  The rise
time tor case DI with o longer relaxation time js

shorter at o tived distance than the rise time for
case D2 with o shorter relaxation time.  This
tendenoy can be explaned by the nonstationary
crioedt

For steady, dispersed plane waves, as shown
i Sectron 3.4, the longer relaxation time gives o
thicher rtranvithon or g longer risce time, sSince typ
1< proportional to gy fsee T o3 400 lowever,
the shock thackening time, which was detined by
the teae ot approach of an ampulsive step wave to
the final steady state, s also proportional te
in the modithied Trghthill selution for 4 nonstation-
ary fully dispersed wave.  Furthernore, 1t owas
shown n Scectaon 4.3 that this shock thickening
time was In close agreement with the ROM solution.
That 15, the longer the relaxation tine, the slower
1s the rate of change of shoch thichness.  For case
D4 with the longer relaxation time, the wave still
remains g partiv-dispersed wave whose shock transi-
tion 1s mainly controlled by viscous action, while
tor case D12 with a shorter relaxation time the wave
becomes o tully-dispersed wave whose transition 1s
mainly controlled by vibrational noncquilibrium.
This 1s the reason why the longer reluxation time
pives us the shorter rise time for the weak spheri-
cal waves in contrast with steady nlane waves,

I

145 Effects of N-Wave Puration

In t:1~ =<ection, the effects of the duration
of the N-wave on the decay rate of ipig the rate
of  ancrease  of tgoand the rise time ty are inves-
tigated by changing the radius rg of the pressurized

air sphere. In cases D3 oand Do, real-viscous solu-
tions are obtained for the same conditions as case
112 except tor the sphere radius.  The radii for

cases DY oand Do oare ten and fifty fimes, respectively,
as larpe as the radius for D20 Consequently, the
half-durations of the gencrated N-waves for D3 and

D6 are about ten and fifty times as long as the
half-duration tor D2, Furthermore, the distances
travelled by the wave fronts in cases D5 oand De are
about ten and ity times as long as the distance

mn case P2 to reach nearly the same maximam over-
pressure.

In cuses D5 and Do, the vibrational relaxation
time for oxyeen is much shorter than the half-dura-
trons ot the N-waves, and <7ty 10-< far D5 and
2107 for Doy = 5.0 sec), hy contrast with D2,
where oty 00y at ro- 19m. Acvording to the
classitfication described :n the last part of Section
3, the former cases correspond to quasi-cquilibrium
waves, while the latter corresponds to a moderate
nonequilibrium wave. In this section, the bulk-
viscosity concept is introduced to cvaluate the
vibrational relaxation for oxvgen instead of solving
the relaxation equation for oxyvgen. This assumpt: n
is reasonabiv for these cases due to the fact that
the relaxation time or length for oxyvgen i1s much
shorter than the characteristic-flow time or length,
sich as the halt-duration or N-wave length. In
practice, a typical time step "t tor D5 and Do
becomes longer than g ('t = 11.2 .sec for D5 and
56.2 .sec tor Del.  In the basic ecquations [Eq.
(4.1}, the coeftficient of viscosity .+ .. was
replaced by .+ L+ (v, and the method of solving
the equations tor perfect viscous flows was used,
That is, only spherical and viscous corrections were
carried out in the operator-splitting techmque.
Details of the bulk viscosity analysis are shown
in Appendax b

Figure 1,35 shows the attenuation of (Uplpay VS




the normalized distance v tor cases Av, D20 Dy oand
Do Case MW ois a pertect-inviscid solution tor the
same Pypoas vases D20bd and Do In o the instial
stave ot U pigax o, the decay andives are almost
the same for all cases at higher ooply, but vary
the waves weaken, At r* o= 2,000, n o= 1 for case b,
142 tor case D2, 1015 for case D5 and 1.0 for
case Do The decay andex nodecreases at a tixed
destance as the halt-duration ty increases.  that
1%, the offect of vibrational nonequilibrium on the
decay rate of o piggy 18 weahened as the wave ap-
proaches equilibrium.  since no= 1 far a weak frozen
wave (case Ao), the maxamum vafue of nowonld exist
for a moderate nonequilibrium wave.,  Among the cases
<hown in thix section, the maximum value of nowas
obtatned tor case D20

as

Pigure .33 shows the nermalied halt duration
tous o tunction ot re, where t3 ix detined by 1:1 :
ayty ry. the halt-durations rapadly inerease an the
mitial stage tor all cases due to the nonlinear
eftect, but are gquite difterent at the later stage
ot woeahened waves depending on the degree of vibra
tronal nonequilibriam, For scab waves below 100 b
the rate Oof Ineredse s Jero 1or o0 Frosen wane
coase Avd, but positive tor nencguinbihrium waves
o hor o The manimum rate of  increase
of g ovs ot ebtaaned tor the mederate nonegui ks
broum wave ccase D20 Jas woll as for the decay tute

poasexs DoyoDD

SRR LRI Fig. 135

Figure 1,35 shows the vise time Up das o tung
tion of t piggy.  dThe broken Line indicates the
moditfied Tavior solution ror steady, real-viscous,
plane waves, in which the coetticient of viscosity

coop o+ Loyt dsoused anstead of Loan the Taylor
solution.  The chain hines andicate the moditfied
Fighthill solutions tor real viscous N-waves with
tg = 0 osed, 5T0 Lsecoand 2,000 Lsec, respectivels
which correspond to the halt durations at re= 2,000
1nocases b2DS and Do, [t can be scen oan bypl bosy

that the rise time tacreases with increasing tyg at o
tixed (Tpoigan and approaches the modiried Jayvlor or
Frghthill vatue.  Inocase Do, the rise time ty over
shoots the moditiced lavior value tor the higher
shoot would correspond to the
|

CPhgay e Uhis oove
vrershoot of t above the lavlor valuce tor an o
pulsive step wave described an Section S, oand
can be improved by using 4 finer mesh s As
described for plane waves in Scection 4.5, the
present method of caleulation gives good results for
the transient behaviour of ty, but has the Jdetect
that there appear some overshoots ot t above the
Faylor value for quasi-steady waves,  Some improve
ment will be required in the caleulations in g
future study.  The nonstationary otdect clearly
appears for o pigax A0 Paoan case D3 oand for

I Phpax 1O Pa tfor case Do, so that the tp values
tend to frecce and have lower values than the mod:
tred Tavior and Lighthill values.

Fogure 3.30 shows the rise time tye ds g fung
ton of 1 prgag tor comparison between cases Do

and DoAL In case Doy, the relaxation cquation tor
oxvgen wias solved without using the bulk viscosity
concent tor the same parameters as case Do fhe

biack and white curcles correspond to cases bo and
DoA, respectively.  The broken line indicates the
moditred Taylor solution.  The rise taime values of
DOA result in a higher overshoot of the moditfed
Tavior values than those of Do This s the reason
why the bulk viscosity concept wias used an the
analvsis of Nowaves ot long durations,

Frgare 157 shows the noruelized occrpressure
provales CUp/ppr plotted apaanst the normalioed
THe Lt = U For the Same max1mum overpressure
tor cases D20 and bo. A the wive approaches
cqurlibraum, the peok rise toeg becores sharp and
the back becones strarpht .

b ttfects v Sortreren Vbrational Relaxation
b rects o aabrational relasation for
mitrogen o the ittemnstion of - p oo the half
duraton Uy o the rrse time Ty are tivestipated
by ntroducing the ibrational relasation cquat ian
for nitrogen nto the poverimy cauations uscd 1o

the previoas secetion. the vibirational reluxation
tor oavgen s taken into account through the bhulk-
Viscosity concept. dhe real viveous caloalation

was carrred out by antroducing the real pas corre
tion for nitropen aa the operator <plitting tedhniyue.
The detants can be seen i Appendin i

The Tower mnitiad pres e rate ot Py 1oois
was chosen tor cases P R ST I N T A O RN
povtod that the efrect ot coeratnenad v daaaten
for mitrogen wonbd gppear for the Tower v
crerpressure. coase D7ors g vead v sceas o uton
tor the same conditrets o Coso eoeacept o ror gy
In bo, only the vibrat relasaton tor e oen
Ps taken anto oacoeant boooesang tho nallk o vascoety
Colleopt Loroa ol L O L N T RS S N T TN
~olution tor the saso combitiens o caso T oend ladains
the vibrational relaxaton for nitresen N Coad
dsec s dortial Iy, e wae des o arle to e cat the

valealatton ter the crrect ot nitrosen by oaddim the

vibratronal excrtat e 1o nitreden to case ot

dowever, 1t was tenmd that oo ook a0 Lone copatae o
tine tar the wave to o the mas i very
cioush to show the eftecs o ntrogen, Instead, the

TN ab pressure ratie was wod o attaen this L

Within o oasenatsle ooty

. Parvures 1.3~ 1t whon plets of Do T
to v eorsoand v Ve rempuctino vy ter casces
Do, 7 oamd s The Backon and Che Tores an T,
PO andrcate the soditied tavior rise tine ond th
doditred Taghthr Dl et tor g Lo nsEoe and
Potvwer o peal oo waaes . respaa i b he
valuce tg 1.9 osee it oot ter cases BToand
T

Froure 1oss shows that the anatial decay of

CP gy Are o almestothe for hoth D7 oand Ds, haat
the decay rate immereases for o piaggy below Do Paan
b doe to vibratyonat nonequihibriu e nt rogen,
Ao LIATE L.odS tor 7 oand 1200 dor by,

in b oS0, the ancressany rate ot 14 v~ 10 s
sTiphtly lareor an Dy than an D7 odue te

of vibrational nencqguibthroarn for nitrogen However

the citect

A% vastIvoscen Uron bavs 1ol the rise tame ty as
not attected by oot

Prvare T3 shows o corpart-on between the
pro~oure protiles oty 1 :
DS, anad bre s BT shews pretiles of temporaturr

s Yoy cases DToand

and vihrational tenperature for mtroven at the
some Tocation for s these tigures amdicate that
the wave of oat e 1,000 correspends te o highhy
nonequi bibriar wave tor abratrongl excrtation ot
prtroven, and thos the sheck transition s mainly
centrolled by the vibrational ralanation ot oxvaen.
(he mrtrocen noncagu Dibriam acts anly to Jower the

manmun overpressure. It beosard that the

dissapative etfect of vibrational noneguilibrium
for nitroyen 1tn case BS phays ootele Trke ovveen an




case D1, while the vibrational relaxation of oxygen
acts as a bulk viscosity in case D8. Figure 4.40
shows that the wave is a partly-dispersed wave for
nitrogen.  Fully-dispersed waves for nitrogen could
be obtuined for wuves with longer duration and lower
maximum ove rp ressure.,

5. CONCIUSIONS
The toregoing results can be summarized as
tollows:

11} It was shown thut the transient shock structures
of weak plane and spherical waves in air can be
analvsed by solving the unsteady, compressible
Navier-Stokes equations with a vibrational-relaxa-
tion equation tor oxygen or nitrogen, using the
random-choice method (RCM) with an operator-split-
ting technigue.

120 The perfect-viscous and real-inviscid solutions
for impulsive step-waves show that the smearing
processes due to dissipative effects of viscosity
and vibrational noneyuilibrium for shock fronts are
1n reasonable agreement with analysis.  However,
there 1s some randomness in the shock thickness or
the rise time value and there are some overshoots
above the steadyv-state value.

(31 the initial N-wave formation process was estah-
Lished for a perfect-inviscid wave tfor exploding
pressurized air spheres. It was found that the
ittenuation of the maximum (peak} overpressure and
the halt-duration of an N-wave in the far ficld

can be contrelled by a proper choice of sphere
radius and initial diaphragm-pressure ratio.

(b The perfect-inviserd, perfect-viscous, real-
mviscid and real-viscous far-ficeld solutions for
weak spherical waves in air were compared. It was
found that the dissipative eftects of viscosity and
vibrational nonequilibrium of oxygen on the decay
ot the maximum overpressure, half-duration and
N-witve risc time become distinguishable for values
ot Pimax 100 Pa.

{51 The numertcal simulations were carried out for
weak spherical N-waves generated in atmospheric air
trom sparks and exploding wires.  The numerical
results show good agreement with the experimental
data with regard to the decay rate of (pimax, the
increasing rate of ty, the rise time ty and the
wave protiles.  The results indicate that the
observed shock structures of weak spherical N-waves
arc controlled by the coupled dissipative etfects
of viscosity and vibrational nonequilibrium of
oxvgen.

(6) The caleulated and observed rise times (or
shock thicknesses) for weak spherical N-waves are
mostly much smaller than those predicted analytic-
ally for steady plane waves. It is found that
this phenomenon 1s attributed to the % and the
’ Sfoere, coupled with vibrational
relaxation of oxygen. The shorter half-durations
give shorter rise times for the same maximum over-
pressures due to flow expansion behind the front
shock of an N-wave (N-wave effect). A more rapid
decrease of the maximum overpressure also results
in a shorter rise time for the same maximum over-
pressure, since the shock-thickening time becomes
increasingly long as a wave is weakened, so that

o v e

e PN ViMe » t
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the increasce of shock thickness cannot fellow the
change in maximum overpressurce nonstationary
effect).  Furthermore, a longer relaxation time
results in a shorter rise time in contrast to a
steady wave, since the shock-thickening time is
nearly proportional to the relaxation time for
dispersed waves (nonstationary effect),

(71 As the durdtion ncreases, tie rise time
approaches the modatred Tavlor value for steady
plane waves or the modified ighthill value for
quasi-stationary N-waves, which 1s obtained by
introducing the bulk viscosity concept into the
viscous-flow anulvsis., For waves with longer dura-
tions, the nonstationary effect on risc time
appears only for lower maximum overpressures.

(8) The decay mndex n, which denotes the local decay
rate of 1 pimgx, detfined by O pipax r'h,is eyual
to unity for a classical, linear acoustic wave, but
increases due to the dissipative effects of viscosity
and vibrational nonequilibrium for moderate non-
equilibrium, weak spherical N-waves, It approaches
unity tor quasi-equilibrium waves of long duration.

19 The effects of No vibrational nonequilibrium on
UPlmaxs td and toare found to be similar to those
of 02, such us an increase in decay index and half-
duration, and smearing of the pressure peak.  These
effects appear only at loker maximum overpressure
thelow J0 Par for waves of long duration.

the original
the

Section 1,
Study was 1o answel

Finally, as noted an
motivation tor the present
question whether N-wives generated by sparks or
exploding wires can simulate Ssi-generated N-waves
including real gas effects on Newdave Tisce times. lhe
answer s '‘not, since anlihe SSi-generated N-waves
produced by sparks and eaploding wires, the risce
times dare determined by N-wave duration and the non-
stutionary distance travelled trom the source.
vevertheless, the present study s important since
it has succeeded an providing appropriate explana-
tions tor the rise times of spark and exploding-wire
generdtoed N-waves by using the concepts of the V-
o and the © oo e e with the aad of
\"C.l'.\' pood RUM simulations of the actual experaments.
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]
Tuble .1
\ibrational Relaxation Times tor Uxygen - ) and Nitrogen ()
T Tt T T T T T e e e
i Series o “*_»I‘l l'\)A Rllu(” ) o Al () o Lesed) N (msec)
1 Spark 2T3-277 50-73 U.35-0.45 13-1" 1.05-1.22
I Spark J8Y 50 .50 5.8 0,52
Il I'w Al ) 0.0l 9.1 0.75
v EW 280 57.5 (.88 5.7 .52
I'j-room temperature, RH-relative humidity,
AH-absolute humidity, Ew-exploding wire
lable 3.1
Parameters for Computation of Spherical Waves
(a1 Perfect-Inviscid Flows
S ] e
Case I“ 11 B r“_—’
Al 2.0 0 1/80, 1/30
B AlA 2.0 1.0 1/10
L A2 2.0 2.0 1710
A3 9.0 1.0 1/10
Ad 9.0 9.0 1/10
A5 2.4 1.0 1/30
A6 1.8 1.0 1/30
G {b) Pertect-Viscous Flows
e y T : . ek . N
Case l“ I“ 11 (K) r(].ti) _1‘ _xﬁ(&m)_{!
‘1 Bl 2.44 1.0 273 1.15 1730 (0383
¥ i B2 1.2 1.0 T3 1.8 1740 0.5
{c) Real-Inviscid Flows
~ o
3 . . s . o . . C e . - i
' Case Piy I“ ll (K} RH (%) PRLY r, tem r ro(cm)
[ S —
Locl 2440 1.0 273 67 15.0 115 .30 U.0383
; c2 1.2 1.0 273 o7 15.0 1.8 1730 0,045
s {d) Real-Viscous Flows
¥ Al T 9 a L - tpw - -
3 Case }41 l41 Tl (K) RH (%) o (1.8} LN {em) - r Jro(em)
D1 2.44 1.0 273 67 15.6 1.15 1730 (.0383
D1A 2.4 1.0 273 67 15.6 1.15 1710 0.115
b2 1.8 1.0 289 50 5.54 1.15 1,30 0.0383 .
D2A 1.8 1.0 289 50 5.54 1.15 1/10 0.115
n3 3.3 1.0 280 87.5 5.73 1.8 1720 0,09 }
D3A 3.3 1.0 280 87.5 5.73 1.8 1710 0.115
D4 1.8 1.0 273 67 15.0 1.15 1/30 .0383% '
s 1.8 1.0 289 50 5.54 11.5 1/30 0.383
I D6 ,D6A 1.8 1.0 289 50 5.54 57.5 1/30 1.917
\‘ D7 1.08 1.0 289 50 5.54 57.5 1/30 1.917
N8 1.08 1.0 289 50 5100 (N3 57.5 1730 1.917°
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FIG. 1.2 DEFINITION OF RISE TIME ty OF A PLANE WAVE.
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SPARK AND EXPLODING-WIRE-GENERATED N-WAVES.

(a¥ SERIEs 1 - SPARK
S =6.0KV, r= 21.6m; ([\.p)max =
tg = 72 us, ty = 11.9 us.
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(b) SERIES 1V - EXPLODING WIRE
S=6.0 KV, r=293m; (Apipax = 20.2 Pa,
td = 122 ps, ty = 15.2 us.
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(b) SERIES II - SPARK DATA
LIGHTHILL:  (Ap)max = 5-83 Pa, tp = 16.7 us, tq = 76.8 us.
SERIES I1  r = 19.0m, (Ap)max = 5.83 Pa, ty = 15.5 us, t4 = 76.8 us.

FIG. 3.10 COMPARISON BETWEEN EXPERIMENTAL ---- AND THEORETICAL
(LIGHTHILL) PRESSURE PROFILES OF N-WAVES.
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(c) SERIES I1I - EXPLODING-WIRE DATA
LIGHTHILL: (\P)pax = 17.0 Pa, tp = 7.97 us, tg = 113.6 is.
SERIES [I1I1: T = 27.6m, (Ap)pax = 17.0 Pa, ty = 10.5 us, tg =
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FIG. 3.10 - CONTINUED
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FIG. 3.19 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL (MODIFIED ‘
LIGHTHILL) PRESSURE PROFILES OF N-WAVES. j
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FIG. 4.3 SHOCK-TUBE PROBLEM USING RANDOM-CHOICE METHOD FOR A
PERFECT-INVISCID FLOW (Pgy = 2.0, Tgp = 1.0, 'x* = 1/40).
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trom oAb d Re=vons 0o This gives the relation
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R a AR
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Poax. respectively.  The values of poand Ty are
——

IN THE DLGHULTE L N CWAVT Sofiron

caleulated from the pterative equations, which uid

derpved trom by 03 18 as
- L
bl B .-
9 Soneapaiter |l - -] Ao
: [SIStANT
\
N ey
kel i R
l ZontexpiRer -l - 1 \.
N [E I
Ty
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‘ APPENDIN &

BERIVATION OF ANALYTLGAL RELLALLONS 1N SECTION

SUoberivation of bq. 132900 Cratical Over Substituting bg. (B8 anto bg. (B.71 obtain-
{ U N
) 1 iy 2 ! 2 ;
Consider o steady normal shock wave inoaogas {E . - TR R |
with vibrational excitation and assune the equily- o 1 U -1 u,
briwn states tor hoth sides of the shock tfront. i . . !
hen, the eyuations of continurty, momentum and u U - 1“1—
Al IR 1
Clerys are guien by A (l R FUN ‘
) b I ) " 1 -
4y ! ]
REEIN
Gy F u, [ - - H
1 R : '
.
1
. N Substaituting by, (bhodr anto g, L, tnon
3 "‘1 . 'l“lh Sop. ot LuT B2 5 R
] L, AP I (IR RV R SN
z 1
h P T '
. 1 3 1 2 ! t SRR b
(S - w7 vl * s o-oul T (B.3
pl 1 201 p 2 N 22 \ .
d Putting Y- 1, the expression for the oritooal et
K- prossure {paey s
where the ~ubscripts Foand O denote the states :
dhead ot and behind the shock front, respectively; p RTINS N Ll
’ Sl 1 - -
,adensrtysou, velocity, o p, o pressure; b, tempera- vl 7 - - ; .
ture;, , vibrational cnergy, tpo specific heat at [T -
constant oressure for transltational and rotationagl
' energy, o osumed constant, he equation of state
§ and the vibrational energy are assumed to be ex Bo2 vervaation of B ool sloo Dt
pressed Dy - R
3 Paiincion 30200 tor Coyovant Do Uewatton L
P AN i b
/ N \ N T
By ‘> 4 - 5 - :
P i 1 . ! ' -
"
i [T ' -
| Sttt - R R RS
j ( 1 : a I - -
1 1 1 L ‘.
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M
Sl
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W RPERE the ratre o spedttic neat [ ANERNE N A S USRI B}
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P L - : - Cou T T tor transLattonal and Fotationd] coeryy .
oo [ : 1l 1
L Uein the relatyen D30000 0 obtain trom §g
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b [ " | = N
| ; t <1 N .
, ; : h B v N 1
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Substituting Eq. (B.13) into Eq. (B.12), obtain

Loy BP, L 0ey )
kK 2 e (v-l)zcj P OPer;  BPer,;

(3.32)

B.4 Derivation of Eq. (3.34) from Eq. (3.24):
Polyakova et al (Ref. 21)

Equation (3.24) can be rewritten as

*Yo 1) v 1 v
of gl 2] bt e
v

0 Yo
(B.14)
Using the notations for a normal shock in B.1
ﬁl'ﬁ = v+90 (8.15)
v ﬁl-G (p) _ (4p)
1 + — = 2 = 2 _E (3.33)
v d, -u tAp)z by ),
0 1 72
Using the expression (3.32) for k
B s SRS AT s LA e R
kiy o2y Py oende, T YR K
(B.16)
where Z is defined as
2
a (ap)
z:-Ly__‘i_E (3.35)

Substituting Egs. (3.33), (B.16) and (3.35) into Eq.
(B.14) obtains

(8p) -
m . 2 _ (5p) }
(Z-2 ) E + ———(Ap)cr’j] n \_l —P——(Am2

_[l-ff)2_7gn E‘N_} (3.34)
g ] . (8p),
where
y
2y = é}f [i%; + % inZJ = const (B.17)

B.5 Derivation of Eq. (3.34) from Eq. (3.37):
Johannesen and Hodgson (Ref. 12)

From Eq. (B.10)

2 [whz(\r-l)cj](Ap)z/pl + Z[Y*(Y-l)ij]

(B.18)

£ 2y(1¢(y-l)ch

Introducing the relation (3.29), then

2
M2 sl 2(y-1) ¢ (4p),
£ 2Y Y+1 P,
[} . 4,
L yeL ( P)CELJ {i i (2p), ] (3.19)
Zy P (Ap)cr,j

The terms in Eq. (3.37) can now be rewritten as

T2 29279y UPep i P
- uy uy 1 cr,j
(B.20)
~ 4 (&p)
-(Y*l)Mfz 4 [1 -2 ] SR &2 e S T 30
0 . 0 Y Pl
Y Y
and
2 N
Mf [(Y‘l)*Z(Y-l)Cj] . [1 Y ] . (rex (AP)2
20T, \ g, ya T, Py
J (B.22)
Thus, Eq. (3.37) can be rewritten as
(v+1)x (Ap)2 vl (p),
ZyaITJ p1 Y P
. g_’_l (AP)cr’j ]‘i _ (Ap)z " n [ 1 (Ap)z (A)
N Tp @PYer,j | ;;f P (Ap)
(4p), (ap)
v~1 cr 1 2
- ~______dl ( tz_jz;_; {n (.__7 - <
. - Mg
x {1 - 48p) }
{l (Ap)z (B.23)
Define
(4p)
2 - X 2 (3.39)

0 v+l (Ap)cr,J yMg Py
(B.24)
then obtain
[ (P)c”] n [1 - (Ap)z]
- (8p),
P I (ap)
Ll ey ; } tn [(AP)zJ (3.34)

)
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B.6 Derivation of Eq. (3.41): Frozen-Shock
Overpressure

Generally, the frozen overpressure can be ex-
pressed as

(Ap)¢ 2y 2
-s;—-= T M5-D (B.25)

Substituting Eq. (B.19) into Eq. (B.25), obtain

(bp)g  (0p), (4p)

cr,j
P Py Py
(5p)¢ N (Ap)cr’-
EEP)Z ' (4p),

(3.41)




APPENDIX C

PROGRAM LISTING FOR RANDOM-CHOICE METHOD

The program for solving Eq. (4.1) using the where Ly is a reference length, taken as Lg = 5rg,
RCM with an operator-splitting technique is given in most calculations.
in this section. The normalized variables used for
computation are: The time step is determined from the maximum
value for the local stability criterion (CFL
p condition) at each time step:
] E' = E/(pRT)),  v' = Vv//RT,, p'=p/p,
k At' = max[Art/{|v'| + VYp'/cT})

= t o L.
o' =o/eps T T/T,» 9% cj/(RTl),

The program listing given below was used for
r' = r/LO, t' = alt/(J§ LO) the computations of real-viscous spherical waves.




RANDOM CHOICE METHOCD VARJATION H2,
3# SPHERICAL WAVE i )
3% REAL » VISCOUS
IMPLICIT REALXE (A~HsP-=2)
DIMENSION KT1(10)»PT1(¢(10)sTT1(10),TV1(10)
REAL XARRAY(416)»YARKRAY(416) '
COMMON/IK/KRY>KL s ISTPIKRINPLsITTsN ) .
COMMON//DT»RLIULIPLIRYUIPSEIRRIURIPRIX]12Y»GAMsSOL»SOS»SOR
COMMON/QUT/TIMEs»DXsRHDO(416),PRE(416)2UXCG16)9ENG(416)9XR(416)
1,PRFAC
COMMON/RAD/ETASREOYPRANSTA(416)92U2(416)
COMMON/RELAX/SD(416)sUZ(416)sE1sTH1»TAU
COMMON/TSU/ISK»1SS»ILM
INTEGER TSTP
C .-
C GATA READING
READ(5581) NPRINS
READ(5381) ISTART
READ(5281) NQQT
READ(5981) 1aG
READ(5»81) NSTOP
READ(S5s81) JCT
READ(5981) JD
READ(59381) N
READ(5981) NHALF
READ(5»81) N@GQ
READ(53281) IXYP
READ(S5581) INCR
READ(5281) ISK
¥ READ(5»81) 1SS
READ(5382) TMAX
READ(5282) TMIN
READ(5282) PMAX
READ(582) PMIN
REAC(S5282) XP1
READ(S»82) XP2
READ(S5282) XFAC
READ{5:282) RMAX
READ(53982) PRFAC
READ(5282) ESS
READ(5982) ETA
READ(5282) WL
READ(5282) PL
o ! READ{(59282) RL
READ(5982) TO
READ(5982) RH
READ(5982) COEP
READ(5:82) COET
81 FOQRMAT(:10)
82 FORMAT(F15.7)
C CGEFFICIENT OF XYPLOT
YPl==PMIN
YP2=(PMAX+PMIN)I/12.0
YP3=~=TMIN
YP“:(T"AX‘TM!N)/I?.O
JCTM=JCT-JD
LMT=1
NP1=N+1
NP2=N+15
NPM=N-1
NPX=N-5

[aXa¥al

oy, el

Cc-2




APPENDIX D

PROGRAM OF MacCORMACK'S FINITE-DIFFERENCE METHOD

In Section 4.3.2, the RCM solutions are com-
pared with MacCormack's solution for a perfect-
viscous plane wave. In this section, the scheme
and the program of the MacCormack method are given
for the perfect-viscous plane wave.

The basic equation (4.1) can be written for
perfect-viscous plane waves as

dt ~ ox 2~
Ix
B T v 0
U= 1 pov |, F = ovzop , C = 2uv
E (E+p)v ATepv?

E=op [e + 1 VZ]’ e = % p = PRT

The corresponding finite difference scheme of
the MacCormack method are the predictor step:

At n
—5 (]
(ax)? il

_ ——
U'i"l=U'.l L -2 .l

n
i A& i»l'Fi)’

i-1

)

and the corrector step

n+l 1 (onel _ At znel  =nel
RS SCARER AR AR A
At (zn+l =n+l  =n+l
! (€ - 267 + &)
The normalized variables used for computation
are
E' = E/(pYRT)),  v' =vVv//(YRT)),  p' =p/p,
p = o/ol, T = T/Tl’ X' = x/Lo, t' = alt/L0

where Lo is the reference length, and put as Lg = 5x.

The time step is determined from 90% of the
maximum value for the local stability criterion (CFL
condition) at each time step:

t' = max[0.9 Ax'/(VT' + {v'|)]
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B3 36 38 6 36 30 36 36 36 3¢ 34 3438 34 34 3 3 3¢ 3¢ 34 31 34 36 38 38 3¢ 3 36 34 36 38 34 3¢ 3¢ 3¢ 3 34 3 38 36 36 36 3¢ 3¢ 36 3¢ 36 3 3¢ 3¢ 36 36 34 36 3¢ 36 34 36 36 36 3¢ 86 38 3 6 3 3 3¢ 36 3¢ 36 3 3¢ 34 34 3¢

# USERID = TAN3D00O ¥
# PROCEDURE = LOGON2 &
% TSLOG STARTED TIME=1N257:08 DATE=B.~12-N8

363836 33 3 368 36303838 303030 3 03056 3636330303030 3030 3030 20 0 3630 3600 3636 36 3 30 0 6 JE 620 2004 DEIE 3036 20 36 30 36 3636 06 28 26 24 38 3434 36 3¢ 34 34 98 34 36 3¢ 42 3¢ 3¢
READY
£ MAC F7(F])

3

LIST

00010 C PROGRAM LIST OF MACCORMACK METHOD
00020 C

00030 C ¥ SHOCK TUBE #

00040 C # PERFECTse VISCOUS %

00050 C # MACCUORMACK 3

00060 IMPLICIT REALXB (A=HsP=2)

032670 GIMENSIUN Ul(40193)5U2(40193)9v2(401)9X(401)9PA(415)
00080 1 sKT1(10)9PT1(10)

00090 29VC(401)»TC(401)

00100 REAL XARFAY(401)9YARRAY(401)

0o011¢c C % DATA READING 3t

0012¢C KJ=399

0n1zc PMAX=220

00140 NNQ =4

0015¢ 10=161

00150 11C=2

0017¢ wERsn

00150 NPRINT=1

C0lvo £SS=0.02

00200 XFAC=2.%

00219 PFAC=1400

00220 CFAC=0.9000

00230 F4=2,0000

00240 T4=1,0000

00250 «L=0.00°%

00260 C % COMSTANTS

00270 KJl=KJ+1

002&¢ KJ2=KJ+2

00299 KJJdzKJ+13

00300 KS0=1D+19

00310 KLO=ID=20

00320 APXzKJl=5

00330 NCO=4 4 0#NNOD

00340 ES1=FSS#0401

00350 Ux=1,0/0FLOAT(KJL)

00360 GF=144000

00370 (2=GF*(GF-140)

00360 Gl=1,0/G2

00390 vISC=1.5D0-05

00400 REO=(041013D¢04)3tWL/7340,0/V1ISC

00410 GFPR=0e7000%(GF=140)

00420 C # PRINTING OF CONSTANTS #

00430 WRITE(6s111)

00440 111 FORMAT(//1HO 910X 363833636 36 3 33 303 3 13303630 3436363634 Y 90 /1H 910X
00450 3 ' SHOCK TUBE #'/71H 910X ' PERFECT 4 VISCOUS #!
00460 # s/1H 910Xe '3t MACCORMACK | Y
00470 # Z1H 910X o ¢ 3383636336 33636 20 26 36 36 2 3 363 2434 3636 24 0 )
00480 WRITE(69112) KJLasNMAXINND 9 IDs INCONGQsNPRINTIESS9XFACY
00490 ¥ PFACYCFACyP4sTGsWLIVISC

00500 112 FORMAT(//1H 9'KJ1='9139'y MMAX="9]3s'y NND=',

00510 3 [29%s ID='s139's [INC='9129'y NQQ="'Y

00520 # 13s's NPRINT='9129/1H #'ESS='9F 759"y XFAC=2',
00530 # FS5e29%'y PFAC=*9F5,39'y CFAC='9F 7.5

00540 3 'y P4z'9F 10659y T42'9F10459'y WLE'9F 759
00550 % /1H 9 'VISCOSITY='4D15.7)

D-2




00560 C # MESH # i
00570 X(1)==0e5%0X i
00540 (:0 190 J=1sKUl ‘
00590 190 X(J+1)=X(J)+DX ,
00600 C 3 INITIAL CONDITIONS 3
2 00510 Ly 266 J=lelb
00620 Ul(Je1)zP4/ T4 i
60630 U1(J92)=040
A 00640 V2(J)=0,.N
b 00654 VC(J)=Ce
F G0meD TC(JI=T4
‘ 00670 U1(J23)=Gl3%Pe
5 00AR0 206 PA(J)=Pa4
i 00690 1D1=1n+1
' 00700 0O 207 J=IN1sKJy2
; 00710 G1(Jsl)=1a0
00720 Ul(J92)=040
] 00730 V2(J)=0e0
) 007490 VC(J)I=NeD
3 00750 TCtJ)=1a0
00760 U1(J93)=G1
. 00770 207 PA(JI=1.0
0074y GL 2070 J=KJ2sKJJ
00790 2070 PA(J)=1eD
DOEDD DO 208 =193
00810 208 ULCIDs1)=0a5%CULCIN+191)+UI(IN=1s1)) ;
008220 PACIN)=Z0eSH(PACIN+1)+PA(IN=1)) ‘
D0F3D TCOIN)I=CoSHITCCID+1)+TC(]D=1))
00640 Yz0e0
0050 (RT3
00R6( NCAZ!CO
00870 C # FLOT 1% =--=-FQR SLOw PLOTTER
00550 CALL NEVICEC'XYPLGT  '90s09090)
00n9Q CALL RPaliD(C309200%80922603K0)
00900 CALL VSINI(0e090e0920e092640) i
00910 0J 250 1=1sKJ ]
00920 XARRAY (D) =XFACH(FLAAT(I=1)/FLOAT(KJL1)+0,53%DX) i
0930 250 YARRAY([)=PA(l+1)-1,0
00940 YARRAY(1)==0,7
00950 CALL PLUT(%eDs4e09=3)
00560 CALL SCALE(XARRAY$12.59KJs1)
00970 CALL SCALE(YARRAY$15.5yKJs1)
00680 CALL AXIS(0e090s096HX=AXISs=6312¢530,09
00990 3 XARRAY(KJ1) 9 XARRAY(KJ2))
010060 CALL AXIS(0e090e03)12HOVERPRESSURE 9129156599040
01010 3 YARRAY(KJ1) 9 YARRAY(KJ2))
. 01020 YARRAY(1)=140
01030 CALL LIMNE(YXARRKAY3YARRAY 9K J919Cs0)
01040 CALL SYMBCL(142917403063937H“ACCUORMACK METHND (NR=1609TX=049%CFL)
01050 3 0.0937)
01060 CALL SYMBOL(1e2916403043933HPERFECTIVISCOUS(P41=22.009T41=1er)y
01070 3 DeN933)
01080 C % MACCOFMACK
01090 DO 209 J=lekJ?
01100 (0 209 I=1+3
01110 209 U2(Je1)=ULCJs )
01120 KS1=xS0
01130 KL1=KLO
01140 01 360 M=lsNMAX
01150 CFL1=140
01100 DO 3n0 J=KL1sKS1
01170 CFL2=1+C/(DSQRT(V2(J)I+DSART(DARS(PA(II/ZUL(Jr1))))
01180 IF(CFL1sLT.CFL2) GO TM 300
01190 CFL1=CFL?2
01200 JCFL=J

01210 300 CJInLTINUE




01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01350
01390
0140¢C
01410
01420
01430
01440
014590
01450
01470
01480
01490
01500
01510
01520
01520
61540
01550
01560
01570
01540
01569
01600
01610
01620
01630
01640
01650
01660
01670
01620
01690
01700
01710
01720
01730
01740
01750
017560
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870

DTXsCFL1#CFAC
DT=DTX3#DX
DPwz2.0%0T
D3=z0e5%#DTX
Ce=DTX/DX/RED
D5=2D4/GFPR
L620,5%04
07=0+5%D5
YsYDT
CO 362 J=KL1sKS1
oon=NTX
U2(J91)3Ul(Js1)=DTXHUL(J+192)+NNDRUL(J92)
U2(J92)=U1CJ92)=DTX3#UL I+ )HV2(J+1)+DDNHUT (U9l ) 3V2(I)=DTX3
1 (PA(J+1)=PA(J))/GF
% +C4#(VC(J+1)=2,03vC(J)+VC(J=1))
U2(J223)3U1(Je3)=DTXHULCU+1s2) % (UL (J+193)+PALU+1)/GF) /U110 I+l 1)
1 +DONRUL (U213 CUL(Je3Y+PACIU)/GF)/UL(Js 1)
3# +D5R(TC(U®1) =24 034TCCU)+TC(U=1))+NGR(V2(I+1)=2,0#Vv2(J)I+V2(I=1))
302 CUNTIMUE
0 303 J=KL19KS1
VAzUZ2(J92)/7U2(0(Js1)
IF(DABS(VB) eLTe(0a1N=08)) GO T3 3¢10
va(J)=VEH#%R2
GO TN 3011
3010 V2(J)1=0.0
3011 PA(UY=G28(U2(J93)=045%#V2(J)3%#U2(Js1))
vC(J)=2.0%VE
TC(JY=PA(JY/UZ2(Js 1)
303 CUNTINUE
0Jd 334 1=193
304 U2(1s1)su2(2s1)
U2(192)==U2(1+2)
V2(1)=v2(2)
PA(1)=PA(2)
vC(1)=vC(?)
TC(1)=TC(2)
DD 306 J=KL1sKS1
boDL=N3
UL(Js1)=0e5% (UL )+U2(Je1))=ND0HU2(Js2)+D3%U2(J=192)
Ul(J92)=0e53%(UL(J92)+U2(Je2))=NDDXU2(Js1IRY2(J)+D3RU2(JU~191)
1 #V2(J=1)=D3%(PA(II=PA(J=-1))/GF
% +TE(VC(J+1)=2,08VC(J)+VC(J=1))
UL(J93)=0e53(UL(J93)l12(J93))=DDDU2( 2% (U2(J93)+PA(J)I/GFI/U2(J
1 21)4D3HU2(J=192)%(U2(J=193)+PA(U=1)/GF)/U2(J=191)
% +07H(TCUI+1) =2 MHTC(U)+TC(J=1))+DER(V2(J+]1)=2.0%V2(J)+V2(J=1))
306 CONTIMUE
00 307 J=KL1yKS1
VB=Ul(J92)/Ul(Js1)
IF(DABS(VB)elLTe(041D=08)) GO TC 347
V2(J)svirtid2
GJ T" 348
347 V2(J)=0.0
348 PA(JI=G2#(UL(Je2)=0,5#V2()%UL(Js1))
VC(J)=2.0%VE
TC(JIZPA(JY/UL(J91)
307 CONTINUE
03 314 =193
314 Ul(1seT1)=Ul(2s])
Ul(192)=2=U1(192)
v2(l)=v(2)
PA(1)=PA(2)
vC(l1)y=vC(2)
TC(1)=TC(2)
DO 3145 1=KL19KS]
J=KSl=1+kL1
PAASPA(J)=1.0000
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01879 [F(PAALGTFS1) GU TO 3150
1890 U1(Js1)=1.0000
01900 U1(J92)=0e000000
01910 U1(Js3)=26G1

, 01920 PA(J)=14000000
01930 VC(J)=0400000
01940 TC(J)=1.00000
01950 5145 v2(J)=0.000000
i 01960 C # STEP COMTROL #

o 01970 2150 IF(KL1eFERe2) GO TN 315

ko 01940 KLl=xL1=1

S 01990 315 IF(KS1.GFeKJl) G0 TN 31n

k 062000 KSlzkS1+]
02010 316 IF(HON(NS RN G NELD) 50 TR 240
02020 IF(NGLTehEY GN TN RAK
02030 WRITE(R92701) taYeNTXsJCFL
02040 2001 FORMAT(IHOISXsoH . 201795 s 2HY 2 9F12,5,5Xs6H TRZ9FE13,595 sSHICEL =0 ]8)
020%¢Q Kiz(rS1=xL1)/10
020A0C KMlzkMel
p2¢7¢ KMk L1+
02030 D5 2500 [=KL1sKH2eiRINT
020940 ] 2660 J=ly10C
g2100 KTL(J) =1+ (U=1)
02110 2400 FTIC)=PFACH(PALKTL(J))=140)
22126 ri ITF(692501) (KT1()»PTI(J) s =1510)

02130 252¢ CONTIUE
D2140 2501 FORMAT(IGeFE ab9169F 491695 091t aF i beidtsF=etslbsFRanslb9F  atyltey

02150 1 FEobolloFobaltyFHek)
02160 C ¥ PLTT 2 0%

02170 FSAzPA(I.PX)=140

02189 [F(PSALCTWESS)Y A0 TS 999
02190 3 260 l=sleky

02200 YARRAY(I)=PA(I+1)~149

022190 250 CINTINUE

g2220 CALL LIME(XARKAY»YAKRAYsK 9] 9093)
02240 AnR [F(MTIN(ANgNCAYeNEGN) 30 T 269
02249 LIRS VANSANG

02250 LCASE CASINGHNCO

G2260 INC=TAC+1

02270 360 CuUNTIAE
022840 999 CALL VSTERM(Ds()

02290 CALL GPSLTM™
02300 C #OENT M
02310 vRITE(69611)
02326 611 FURMAT(/ /740X 1SHRENNE END 33238/ /7 /)
0233¢ STOP
02340 END
END OF DATA
INPUT
€
EMD S
SAVLL TN CATA SET (T30 Q000eMACLFNRT)
READY
| TSLUG E™ND
03636 36 30 3¢ 36 38 36 36 30 38 36 36 36 36 3¢ 08 3¢ 36 36 34 36 34 36 38 3 3¢ 36 36 36 34 36 35 35 35 36 38 34 3 36 38 36 36 35 36 36 36 36 3 36 36 36 3¢ 3T 34 3 34 34 36 3 36 3 3¢ 36 3¢ 34 3 3¢ 330 36 34 34 3¢ 3¢ 3¢
#  USFRID = T300n00 3
# PRCCEDURE = L7GON2 3#
¥ TSLOG ENDED TIME=10:58230 NDATE=82=12=08 ¥

36 30 3636 36 % 36 34 3 3¢ 38 36 36 35 30 36 3038 3636 36 3 303020 3030 30 38 34 3¢ 3 36 36 33 T 34 3% 30 36 3 36 36 38 3 3¢ 36 34 34 36 3 3¢ 36 36 20 30 38 36 3 34 36 34 30 36 31 36 36 36 M 3633 ¢33
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APPENDIX E

COMPARISON BLTWEEN NEAR-FIELD SOLUTIONS

OF THE EXPLOSION OF A PRESSURIZED AIR SPHERE

USING LAX, MacCORMACK AND RANDOM-CHOICE METHODS (RCM)

FOR A PERFECT-INVISCID FLOW

In the initial stage of the present study,
several numerical methods were tried to solve the
problem of the explosion of a pressurized air
sphere. Some of the results are presented here
to show the superiority of the RCM over other
methods for analysing shock-transitions of spher-
ical N-waves.

The near-field solutions using lLax, MacCormack
and RCM for the same case as Al (Py) =2.0, Ty1=1.0)
are shown in Figs. E.1, F.2 and E.3, respectively.
In Figs. E.1 and E.2 (Lax and MacCormack methods),
the time steps were selected to be 80% of the CFL
condition to avoid undesirable oscillations of
numerical values. As seen in Figs. E.1(a) and

EE.2(a), the Lax and MacCormack solutions give
smoothed shock-transitions due to the effect of
artificial viscosity in a rough mesh size of 'r* =
1/80. By using the finer mesh sizes |'r* = 1/320,
Figs. E.1(b) und £.2(b)], this smoothing is improved,
and the Lax method gives a better result. lHowever,
the smoothing at the front shock still remains.

The RCM solutions [Figs. E.2{a) and (b)] show
discontinuous shock fronts irrespective of mesh
sizes (i r* = 1/40, 1/80), though some randomnesses
appear in the cxpansion part of a pressure profilc.
In our analysis of shock transition, it is necessary
to clarify the effects of viscosity and vibrational
nonequilibrium on shock thickness without the effect
of artificial viscosity. C(onsequently, we adopted
the RCM.
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FIG. E.1(a) NEAR-FIELD SOLUTION OF EXPLOSION OF A PRESSURIZED
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FIG. F.2(a) NEAR-FIELD SOLUTION OF EXPLOSION OF A PRESSURIZED
ATR SPHERE USING MacCORMACK METHOD FOR A PERFECT-
INVISCID FLOW (CASE Al). MESH SIZE Ar* = 1/80.
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APPENDIX F

BULK VISCOSITY ANALYSIS FOR VIBRATIONAL RELAXATION FOR OXYGEN

In Sections 4.4.5 and 4.4.6, the bulk viscosity
concept is introduced to evaluate the vibrational
relaxation for oxygen instead of solving the relax-
ation equation for oxygen. The basic equations arc
shown in some detail as follows:

. 2
LU [ 4 1| ¢
T Gr | w2 T
s GO - H = 0 (F.1)
il [ |
‘ T Y
2
I\ v povoep
= i =
U ¥ ‘, F i (E+p)v
;~ .V , p'Vk‘N J
[ NV !
S B
Y
1
= R4y 2
C l Ae\r , ), “I r ‘ (E¢p)v :
T+ "ev ! i- n‘\/«’N |
l 0o “ [\ 1
' |
2 | 0 )
! oY i
H '?‘ o I Hp = 0 3
| :
) ' = !
: ( ! __UIIGN) ON]/TN |
> 1
p = RT, E = {e « oz vE

instead of kgs. (4.1) and (4.2), where .o 1s an
effective viscosity including the bulk viscosity
iy ) for oxyvgen, defined by

The bulk viscosity (uy)g is evaluated from iy.
(3.25):

hl hl
(byly = tagt-a "1y
= - . 3
- afly e)‘O (F.3)
where
3+ G et "o
e = g =, (:0 = 0,209 7— exp - o (F.5)
3+ &O -1 : 1

The operator-splitting technique was applied to
Eq. (F.1) as well as Eq. (4.1). The effect of vib-
rational relaxation for oxygen was taken into
account in the step of viscous correction [Step 3;
Eq. (4.11)] of the operator splitting through Eqs.
(F.3)-{(F.5). More precisely, in the first step,
the RCM solution should be obtained by solving the
Riemann problem for oxygen in vibrational equili-
brium, since the whole flow field may be considered
for oxygen as in quasi-equilibrium. However, in
the present report, the effects of oxygen vibra-
tional excitation is taken into account only through
the bulk viscosity, since its contribution to the
internal energy specific heats of the air molecules
may be considered as verv small as long as it is
nearly in equilibrium at room temperature. Thus,
the RCM solutions were obtained by using the invis-
cid-frozen program, excluding the term (7g)e in Eq.
(F.2).
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